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THE USES OF INSTANTONS

Sidney Coleman

Lyman Laboratory of Physics, Harvard University

Cambridge, Massachusetts 02138

I. INTRODUCTION

In the last two years there have been astonishing developments
in quantum field theory. We have obtained contrel over problems
previously belleved to be of insuperable difficulty and we have ob~
tained decep and surprising (at least to me) insights into the
structure of the leading candidate for the field theory of the
strong intecractions, quantum chromddynamics. These goodies have
come from a family of computational methods that are the subject
of these lectures.

These methods are all based on semiclassical approximations,
and, before I can go further, I must tell you what this means in
the context of quantum field theory.

To be definite, let us censider the theory of a single scalar
field in four-dimensional Minﬁbwski space, with dynamics defined by
the Lagranglan density

x-sau¢a“¢-am’¢*—s*¢‘. (1.1)

For classical physics, g is an irrelevant parameter. The easiest

way to see this 1s to define

' =g5é . ©(1.2)

In terms of ¢',

:C--é-li-(iau:p' Mot~ imPett - 'Yy (1.3
Thus, g does not appear in the fileld equations; if one can solve
the theory for any positive g, one can solve it for any other posi-
tive g} g:is irrelevant. Another way of seeing the same thing is
to observe that, in classical physics, g is a dimensionful param-
eter and can always be scaled to cone.

Of course, g i# relevant in quantum physics. The reasen is
that quantum physics contains a new constant, Hh, and the important
object (for example, in Feynman's path-integral formula) is

1 u :
 ——— a ' ' + teew . .
A LA T (: u¢ ¥ ¢ ) (}4)
As ve see from thie expression, the relevant (dimensionless) parawm—
eter is‘gzﬁ, and thus, semiclassical approximations, small-¥ ap-
proximations, are tantamount to weak-coupling approximations,
enall~g approximations. .
At this point you must be puzzled by the trumpets and banners

" of my opening paragraph. Do we not have a perfectly adequate smali-

coupling approximation in perturbation theory? HNo, we do not;
there is a host of interesting phenomena which occur for small
coupling constant and for which perturbation theory 1s inadequate.

The easiest way to see this is to descend from field theory
to particle mechanics. Consider the theory of a particle of unit
mass woving in a one-dimensional potential,

L= 4x - V(x;g) , (1.5)
vhere 1
V(xig) = o7 Flg x) , (1.6)

and F is some function whose Taylor expansion begins with terms of
order x2. Everything 1 have said about the field theory defined
by Eq. (1.1) goes through for this theory. However, let us con-
sider the pheﬁomenon of transmiSSidn through a potential barrier

{Fig. 1). Every child knows that the amplitude for tranmsmission

B e
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obeys the WKB formula, x .
2
-% L dx v 2{V-E)
IT(E)| = e ! (1 +o0@)}, a.n

vhere x; and x, are the classical turning points at energy E. This
15 a semiclassical approximation. WNevertheless, transmission,
barvier penetration, 15 not seen in any order of perturbation
theory, because Eq. {(1.7) vanishes more rapidly than any power of
4, and therefore of g. '

1 can now make my first paragraph more explicit. There are
yhenomena in quantum field theory, and in particular in quantum
chromodynamics, analogous to barrier penetration in quantum particle
mechanies. In the last two years a method has been developed for
handling these phenomena. This method is the subject of these
lectures.

The organization of these lectures is as follows: In Section 2
1 describe the new method in the context of particle mechanics,
where we already know the answer by an old method (the WKB approxi-
mation). Here the instantons which play a central role in the new
method and which have giveﬂ these lectures thelr title first appear.
In Scetion 3 1 derive some interesting properties of gauge field

theories. In Section 4 I discuss a two-dimensional model in which
instantons lead to something like quark confilnement and explain why
a similar mechanism has (unfortunately) no chance of working in four
dimensions, '

U(1) problem.

In Section 5 I explain 't Hooft's resolution of the

In Section 6 1 apply instanton methods to vacuum

—lym

decay. Only this last section reports on my own research; all the
rest is the work of other hands.’

1 thank C. Callan, R. Dashen, D. Gross, R. Jackiw, M. Peskin,
C. Rebbi, G. 't Hooft, and E. Witten for patiently explaining large
portions of this subject to me. Although I have never met A. M.
Polyakov, his influence pervades these lectures, as it does the
vhole subjéét,?

A.Noégﬁéﬁlﬂbtationz In these lectures we will work in both

Hinkouski‘ébébé and in four-dimensional Euclidean space. A point
in Minkowski space is labeled ¥, where p.- 0, 1, 2, 3, and x° is
the time coo;dinate. In Minkowski space 1 will distinguish between
covariant and contravarlant vectotrs, Xy = 3uv“y' where the wmetric
tensor has signature (+--). Euclidean space is obtained from
Minkowski space by formal analytic continuation in the time co-
ordinate, x* = ~ix?, A point in Euclidean space is labeled xu,
where y = 1, 2, 3, 4. The signature of the metric tensor is (+HH+).
Thus covariant and contravariant vectors are component-by~component
identical, and I will not!bother to distinguish between them.

Note that x-y in Minkowskl space continues to -x.y in Buclidean
space. The Euclidean action is defined as -i times the continuation
of the Minkowskian action. :

will use t for both Euclidean and Minkowskian time; which 1s meant

When discussing particle problems, I

will always be clear from the context. In Section 2 explicit fac-

tors of 4 are retained; elsewhere, 41 is set equal to one.

II. INSTANTONS AND BOUNCES IN PARTICLE MECHANICS
2.1 Euclidean Yunctional Integrals

In thie séction we will deal exclusively with the theory of a
spinless particle of unit mass moving in a potential in one dimen-—
sion:

2
H-p_z—+V(x).

(2.1)
We will vederive some familiar properties of this much-studied sys~
tem by unfamiliar methods. For the problem at hand, these methods

are much more avkward than the standard methods of one~dimensional

3
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quantun mechanics; however, they have the great advantage of being
immediately generalizable to quantum field theory,
OQur fundamental tool will be the Euclidean (imaginary time)

version of Feynman's® sum over historles:

-5/

e—HTﬁh[xi> = N[[dx])e .

<xg | (2.2)

Both sides of this equation require explanation;
On the lefe-hand side, [xi> and |xf> are position eigenstates,
The left~hand

side of Eq. (2.2) is of interest because, if we expand in a com-
Plete set of energy eigenstates,

H is the Hamiltonian, and T is a positive number.

Hin> = En|n> . {2.3)

then
<x le-llT/'hlxi) - Z e"F-nT/‘h

£ ¢ <xf|n><n|xi> .

(2.4)

Thus, the leading term in this expression for large T tells us the
energy and wave-function of the lowest-lying energy eigenstate.

On the right-hand side, N is a normalization factor, S is the
™ :
Euclidean action T/2 v )
Rl T o I
T/2

and [dx] denotes integration over all functions x(t), obeying the

(2.5)

boundary cenditions, x(-T/2) = X, and x(T/2) = x,. To be more

_ f
specific, if x is any function obeying the boundary condition, then

a general funcrion obeying the boundary condltions can be written

as -
x(£)} = x(t) +zcnﬁ#t).
11}

where the xn's are a complete set of real orthonormal functions

vanishing at the boundaries,

T/?2
J dt xn(t)xm(t) = Gnm R {2.7a)

-T/2

xn(tTf2) =0 . {(2.7b)

(2.6)

Then, the measure [dx] {s defined by P

[dx] = g(zm)‘!’ dey, . (2.8)

(This measure differs in normalization from the measure defined
by Feynman;® this is why we need the normalizatien constant N.
However, as we shall see, we shall never need an explicit formula
for N.)

The right-hand side of Ea. (2.2) is of interest because it can
readily ﬁe evaluated in the semiclassical {small-h) limit. Im this
case the functional integral is dominated by the stationary points <
of 8. For simplicity, let us assume for the moment that there is
only one such statfonary point, which we denote by X, /

8 _ _ 4%

S tV® =0 2.9)

vhere the prime denotes differentiation with respect to x. Further,
let us choose the xn's to be eigenfumctions of the second varia-
tional derivative of § at X,

d%x

- n " - .
TtV ('i')xn Anxn .

(2.10) ’

Then, in the small-h limit, the integral becomes a product of Gaus-
gians,. and we find

<xgle T > = wS@ A (1 4 06 )

- e SR/ [det[-ai + V') 1751 + odn)] o
. (2.11})
{Of course, we are tacitly assuming here that all the eigenvalues

are positive. Ve shall shortly see what to do when this is not the .

_case.) If there are several stationary points, in gencral one has
. to sum over all of them.

Equation (2.9) is the equation of motlen for a particle of

unit mass moving in a potential minus V. Thus,

a2
E=i [d—"‘] - V() (2.12)

2 dt
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(a). Figure 2 (b3

is a constant of the motion. This can be used to determine the

qualitative features of the solutions of Eq. (2.9) by inspection.
As a simple example, consider the potential shown in Fig. 2a.

Let us choose x, = Xe = G,

i
-V, It is obvious from the figure that the only solution of Eq.

{2.9) which obeys the boundary conditions is

x®0 . {2.13)
For this solution, § = Q. Thus, from Eq. (2,11},
<0le™Mo> w nlder(-a2 + )7L + 0], (2.14)
where .
w? = v'(0) . (2.15)
In Appendix A, I show that, for large T,
b
Nidet (-3 + w?))™? = [ii) U2 (2.16)
t Tt
Thus, the ground-state energy is given by
E, = dunfl + 0(h)] . {2.17)

Also, the probability of the particle being at the origin when it

is in its ground state is
l<x = Oln = 05}% = (w/m) 1+ o] . (2.18)

These are, of course, the correct semiclassical results. In

the small-h limit, the particle is in a harmonic-oscilliator ground-

Figure 2b shows the inverted potential,:

v
b3

a R

(a) Figure 3 (b)

state congentrated at the origin and its energy is the ground-state
energy of a harmenic oscillator.

2.2 The Double'Well and Instantons

the double well of
Fig. 3a., 1 will assume the potential is even, V(x) = V{(-x}, and
will denote its minima by #a, As before, I will add a constamt to
Vv, if necessary, to make V vanish at its minima, and I will denote
V"{:a) by w?,

We will attempt to compute both
-HT ]

We now turn to a less trivial problem,®

<-afe  |-a> = <ale M T}a> , (2.19a)

and _HTIa

<ale T jva> = <-ale T |a> , © (2.19b)

by approximating the functional integral by its semiclassical limit,
Eq. (2.11). Judt as before, the first step is to find solutions of
the classical Euclidean equation of motion, (2.9), consistent with
our boundary conditions.

Of course, two such solutions are those in which the particle

stays fixed on top of one or the other of the two hills in Fig. 3b.

_However, there is another potentially Interesting sclution, one

where the particle begins at the top of one hill (say the left one)
at time -T/2, and moves to the top of the right hill at time T/2,
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Figure 4

Since we plan eventually to take T to infinity, we will focus on
the form of the solution in this llmit, where the particle attains
thé tops of the hills at times plus and minus infinity. In this
case, we are dealing with a solution of the equation of motion with

vanishing E; whence

dx/de = V2V , {2.20)
Equivalently, x . ks
t o=t + J dx'.(2V) . (2.21)

]

where t, is an integratlon constant, the time at which x vanisghes,

This solution is sketched in Fig. 4; it is called "an instan=
ton with center at t,”. The name "instanton' was invented by
't Hooft. The idea is that these objects are very similar in their
mathematical structure to what ave called selitons or'lumps,‘
particle-like solutions of classical field theories: thus the "-on".
However, unlike lumps, they are structures in time (albeit Euclidean
time): thus the "instant-", For the same reason, Polyakov suggested
the name "pseudoparticle', also used in the literature.

Of course, we can also construct solutions that go from a to
-a, simply by replacing t by -t in Eq. (2.21); these are called
"anti-instantons".

Two properties of these solutions will be important to us:

~10=

{1) From Eq. (2.20), it is easy to derive a simple expression
for §,, the action of an instanton {or anti-instanton)

a
8, = Idt[}(dx/dt)z + V] = Idt(dx/d:)* - [ dx/2V .
. : . ‘a
Note that this is the same as the integral that appears in the

(2.22)

barrier-penetration formula, Eq. (1.7). We shall see shortly that
this is no coincidence. '

(2) For large t, x approaches a, and Eq. (2.20) can be approx~

imated by

dx/dt = w(a ~ x) . (2.23)

-w

Thus, for large t, (a-x =e

(2.24)

Thus, instantons are, roughly speaking, well-iocalized objects,
having a size on the order of 1/w.

This is of critical importance, because it means that, for
la}ge T, the instanton and the anti-instanton are not the only ap-
proximate solutions of the equation of motion; there are also ap-
proximate solutions comsisting of strings of widely separated in-
stantons'and anti-instantens. (You may be troubled by the sudden
appearance in the argument of approximate selutions, approximate
stationary peints of 8. 1f so, bear with me; 1'I1 give a fuller
explanation of this point later.)

I ghall evaluate the functional integral by sunming over all
such configurations, withln ocbjects (instantons or anti-instantons)

centered at t, ...tn, where

T/2 > t, >t .2 € > -Tf2 . (2.25)

Figure 5 (next page) shows one such configuration. T is as-~
suned to be huge on the scale of the size of an instanton; thus the
smooth curves of Fig. 4 appear as sharp jumps on the scale of Fig.
5. (The vertical marks on the time axis will be explained shortly.)
Now for the evaluation:
(1) ¥or n widely separated objects, S is nS,. This takes care

of the exponential of the action.
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-T/2 T/2

Figure 5

{2) The evaluation of the determinant is a bit trickier. Let

us consider the time evolution operator, e-HT, as a product of
aperators associated with evolution between the points indicated by

the vertical marks on the time axis in Fig. 5. If it were not for

the small intervals containing the instantons and anti-instantons,
V" would equal w? over the entire time axis, and thus we would ob-

tain the same result we obtained for a single-well potential in

{EL)% -wT/?2
wy .

The small intervals containing the instantons and anti-instantons

correct thls formula.

Section 2.1, .
(2.26)

Thus we obtain

)

where K is defined by demandiug that this formula give the right

W/ 2pn (2.27)

answer for one instanton, Later we shall obtain a more explicit

expression for K,

(3) We must integrate over the locations of the centers:
T/2 t t
n-1 a
[ dttJ dbt,... dt, = T /a! (2.28)
-T/2  -T/2 -T/2

(%)

instantons arbitrarily.

We are not free to distribute instantons and. anti-

For exampla, if we start out at -a, the

-12-

first object we encounter must be an imstanton, the next one must be

an anti-instanton, etc. Furthermore, if we are to end up back at

-a, n nmust be even. Likewise, 1f we wish to end up at a, 0 must be
odd.
Thus,
u‘rih > = [__]‘i wt/2 ¢ (KeSofp® (14040 ]
le e j 4 ’ 2.29)

even
while <a|e arf“l-a> is given by the same expression, summed over

odd n s., These gums are trivial:

offimyy .
(2.30)

to keep the page from getting cluttered, T will drop

<ta]e-urm|-a> i [-;'T{]li ee-mle i[exp(i(e_s°m'r) z-exp(-l(é-s

{From now on.
the factors of [1+0&)]; remember that they're omnipresent though
unwritten.) _

Comparing this to Eq. (2.4), we see that we have two low-lying
energy eigenstates, with energies

* 4w * -hKe-s"HT (2.31)

*

If ve call these eigenstates |+> and |->, we also see that

|<+]ta>]? = ]<_lta>|‘ = <al|-><=|-a> = —<a|4+><t|-a> = g[ ) .

(2.32)

Of course, these are the expected results! the energy eigenstates

are the spatially even and odd combinations of harmonic osecillator
states centered at the bottoms of the two wells; the degeneracy of
the two energy eigenvalues is broken only by barrier penetratiom
(and thus the difference of the energies is proportional to the
batrier-penetration factor, e’ =5 ), and the state of lower energy,
which we have denoted by |->,

Our next task is to evaluate K.

is the spatlally even combination.
Before we do this, though,
some comments should be made about what we have done so far:

(1) Really we have no right to retain the sccond term in Eq.
{2.31).

term, 1t is exponentially small compared to the uncomputed

It is not only exponentially small compared to the first
o)
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correciions te the first term. However, it is the leading contri-
bution to the difference of the energies, E+ ~ E_; a purist would
retain it only in the expression for this difference and not in the
expressions for the individual energies.

(2) Our approximation has been based on the assumption that
the instantons and anti-instantons are 2ll widely separated. As a
consistency check, we should verify that the major portion of our

This check is easy to carry out, For any fixed x, the terms in
the exponential series, Ixn/n!, grow with n until n is on the order
Applying
this to the sum in Eq. (2.29), we see the important terms are those
for which

of x; after this point, they begln to decrease rapldly.

a & KT So/T (2.3%

That is to say, for small 4, the important terms in the sum are
those for which n/T, the density of instantons and anti-instantons,
1s exponentially small, and thus the average separation is enormous.
Note that this average separation is independent of T; our approxi-
mation is indeed a small-h approximation; the conditions for its
validity are independent of T, as long as T 1is sufficiently large.

This approxiwmation of suming over widely-separated in-
stantons is called the dilute-gas approximation, because of its
similarity to the approximation of that name in statistical
mechanics.

{3) Finally, 1 want to deliver the promised fuller explanation
of the idea of an approximate statienary point of §. Let us begin

by studying an integral over a single variable,

T
1l = J dte‘s(t)fﬁ

0
where § is a function of ¢ monotonically decreasing to some asymp-

, (2.34)

totic value, ${=®). Thus the intcgrand has no stationary polnts in

the region of integration. Nevertheless, it is easy to find the

approximate form of the integral for small-t and large T:

~l4-

Izt S (2.35)

Speaking loosely, the integral Is dominated by the staticnary peint
at infinity. It's straightforward to generalize this phenomenon to
multi-dimensional integrals: We assume an Integrand whose graph has
a sort of trough in it; the line along the bottom of the trough

flattens out only as we go to infinity. Speaking less pictorally,

" there is a line in the multi~dimensional space such that the inte-
final result comes from coufiguratiens where this is indeed the case, -

grand is a minimum with respect to variations perpendicular to the
line and approaches scme limiting value as one goes to iInfinity
along the line. Of course, the line could itself be generalized
This is in

fact the situation for our “approximate stationary points™; the
y

to a hyperplane, a generalized "bottom of the trough'.

locations of the instantons and anti-instantons are the variables
along the bottom of the trough; S becomes stationmary (and equal te
nS,) only when they all go to infinity.

Thiéiﬁoncludes the comments; we now turn to the evaluation
of Ko _

We must study the eigenvalue equation, Eq. (2.10), with X a
single instanton. Because of time translation invariance, this

equation necessarily possesses an elgenfunction of elgenvalue zero,

I

X, = §, dx/dt . (2.36)

{The normalization factor comes from Eq. (2.22).1 Were we to inte-
grate over the corresponding expansion coefficient, ¢, in Eq. (2.6),
we would obtain a disastrous infinity. Fortunately, we have already
done this integratiom, in the guise of integrating over the location
of the center of the instanton in Eq, (2.28)}. The change of x{t)

induced by a small change in the location of the center, t,, is

dx = (d%/dr)dt, . (2.37)

The change induced by a small change In the expansion coefficient,

¢, is

dx = x,de, . (2.38)
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Hence,

(2"’“)-!’ dC‘ = (ngzﬂﬁ)zi dtl . (2.39)

Thus, in evaluating the determinant, we should not include the

zero eligenvalue, but we should Include in K a factor’ of (S‘IZHH)%.
Hence, the cne-instanton contribution to the transition matrix

element 1is given by
~HT

<a|e a>

ome inst, NT(solzﬁh)%e-sofh(det'[‘ai + V"fi)])-k ’

(2.40)
where det' fndicates that the zero elgenvalue is to be omitted when
computing the determinant.

term In Eq. (2.29), we find

Comparing this to the one~-instanton

%

dez(—a: +wh)
det'(—ai + V' (%))

K = (s,/2m)" . (2.41)

This completes the computation.
Some remarks:
(1)
we have obtained for the energy splitting is the same as that ob~-

I do this in

To really sew things up, I should show that the formula

tained by the traditional methods of wave mechanics,
Appendix B,
(2}

Eq. {(2.10) are positive, other than the zero eigenvalue associated

I have been tacitly assuming that all the elgenvalues in

with x,. It 1s easy to prove that this is indeed the case: It is

well-known that the elgenfunction of a one-dimensional Schrodinger
equation [iike Eq. (2.10)] of lowest eigenvalue has no nodes, the

next-lowest eigenfynction has one node, etc. Because the instanton
is a monotone increasing function of t, X proportional to the time
derivative of the instanton, has‘no nodes. Thus zero is the lowest
eigenvalue aud all the other eigenvalues are positive,

(»

eigenvaluc associated with time-~translation invaviance,

K is proportional to-ﬁ—%. This factor came from the zero

Later in
these lectures we will be analyzing theories that have larger in-

variance groups and for which the fnstantons have mere than one zero

-16~

eigenvalue associated with them. Clearly, for every zero eigen-

5

value there will be a factor of 4 . This rule for counting powers
of ¥ will be very important to us, for, as I explained in Section 1,
counting powers of 4 is equivalent to counting powers of coupling
congstants.

2.3 Periodic Potentials

Let us consider a perfcdic potential, like the one sketched in
Fig. 6a. .
integers,) 1If we ignore barrier penetration, the energy eigen-

(For simplicity, I have chosen the minima of V to be the

states are an infinitely degenerate set of states, each concentrated
at the bottom of one of the'wells. Barrier penetration changes this
single eigenvalue into a continuous band of eigenvalues; the true
energy eigenstates are the eigenstates of unit translations, the
Bloch waves. Let's see how this old result can be obtained by in-

stanton methods.

{0}

O —>

(b}

Figure 6
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As we see from Fig. &b, the instantons are much the same as in
the preceding problem, The only novelty is that the instantons can
begin at any iaftial position, x = j, and go to the next one,
x= 3+l
x=3-1.

Likewise, the anti-instantons can go from x = j to
Otherwise, everything is as before,

Thus, when doing the dilute-gas sum, we can sprinkle instantons
and anti-instantons freely about the real axis;-there is no con-
straint that instantons and anti-instantons wust alternate. Of
course, as we go along the line, each instanton or anti-instanton
must begin where its predecessor ended. Furthermore, the total
wumber of instantons minus the total number of anti-instantons must
equal the change in x between the initial and final position éigen-
states.

Thus we obtain

| -HT/4 % _wT/2 N
<3,le Ij_>-[] Z )1 (Ke 3
+ n=0 n=0 I n-r: j +j_
(2.42)
where n is the number of instantons and T the number of anti-
instantons. If we use the identity
21 .
5, " J 40186 0) oy | (2.43)

the sum becomes two independent exponential series, and we find

x g -
o (2.54

Thus we Find a continuum of energy eigenstates labeled by the

angle A, The energy eigenvalues are piven by
E(0) = $hw + 2hK cos@e-som . (2.4%9)
Also,
1 . ’
w % - ij6 3.46)
<93> [wn] [2n] e . (2.4

Hearteningly, this is just the right answer.

"methods by studying the potential of Fig. 7a.
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- Figure 7

2.4 Unstable States and Bounces®

Galilean pastiche:
SAGREDO: Let me test my understanding of these instanton

If 1 neglect barvier

penctration, in the semiclassical limit, this potential has anm

energy eigenstate sitting in the bottom of the well. 1 wish to
compute thé_go}tections to the energy of this state due to barrler
if I turn the potential upside down (Fig. 7b}, I ob-

serve that the classical equation of motion has a solution in which

penetration;

the partiéfé'ﬁégins'at the top of the hill at x = 0, bounces off
the classical turning poeint 0, and returns to the top of the hill
(Fig. 8). I will call this motion
the tranéitiﬁn matrix element between x = @ and x = O by summing

"the bounce". 1 will compute
over configufationa consisting of widely separated bounces, just as
one sumg over instantous and anti-instantons in the study of the
double well,
well (with the obvious redefiniticns of S, w?, etc.}, save that

Indeed, the sum is the same as that for the double

there is no restriction ko an even or odd nuwber of boumnces. Thus
X
T
o
: Figure 8
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1 obtain the complete exponential series, rather than just the odd
or even terws, and 1 {ind that

exp(KTe

<0le g5 o [#;‘_};’ T2 1, (2.47)

and the encrgy elgenvalue is given by

E, = fuwh +-m<e-s°fh , (2.48)

SALVIATG: Alas, Sagredo, I fear you have erred in three ways.
Firstly, the term you have computed is small compared to terms of
order K% which you have neglécted, and thus you have no right to
retain it. Secendly, I se¢ by your sketch that the bounce has a
maximum; thrrefore the eigenfunction x, which is proportional to
the time declvative of the bounce, has a node. Thus it is not the
eigenfunctivn of lowes: sigenvalue, and there must be a nodeless
gigenfuncti.,na, Xy of a lower eigenvalue, that is to say, there
must be 4 n.ogative eigenvalue. Thus K, which 1s inverseiy propor-
tional to L.e product of the square roots of the eigenvalues, is
ipagivary. Thirdly, the eigenvalue you atteunpt to compute is no-
where fo be found in the spectrum of the Hawiltonian, berause the
state you z:e studying is rendered unstable by barrier penetration.
SAGREDO: Ewverything vou say is correst, but I believe your
criticisme -how how to save the computation., An unstable state is
ane whose ¢.ergy has an imaginary part; thus it is only to be ex~
pected that K should ba lmaginary. Furthermore, the term I have
computed, though indecd small compaved to neglected contributions
te the real part of E;, is the leading contribution to the imaginary

part of E . Thus the correct version of Eq. (2.48) is

A

InE, = F/2 = nlgje 0 (2.49)

where I" 45, as usual, the width of the unstable state.
As you can see, the Tuscan twosome are as quick-witted as ever,
althougl i{:lso as ever) their arguments are sometimes a bit sloppy.

Sagrede has missed a factor of ¥; the correcc answer i3
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Figure 9

I

T =hlkle e (2.50)

To show that this 1s the case requires a more careful argument than
Sagredo's. The essential point i{s Salviato's observation that the
energy of an unstable state is not an eigenvalue of W; in fact, it's
an object that can only be defined by a process of analytic continu-
ation, I will now perform such a centinuation.

'To keep things as simple as possible, let us consider not an
integral over all function space, but an integral over some path n

function épace parameterized by a real varlable, z,

J = szunh)’!’ ST

wvhere é(z) is the action along the path.
choose the path sketched in Fig. 9.

{2.51)

In particular, let us
This path Includes tgo impor~
tant functions that occur in the real problem: x{t) = 0, at z = Q,
and the bounce, at z = 1. Furthermore, the path is such that the
tangent vector to the path at z = 1 is x;. Thus the path goes
through the bounce in the "most dangerous direction”, that direction
with which the negative eigenvalue is associated, and z = 1 Is a
maximum of §, as shown in Fig. 10, S goes to minus infinity as z
goes to infinity because the functions spend more and more time in
the reglion beyond the turning point, where V is megative; mote that

this implies that Eq. (2.51) is hopelessly divergent.
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Figure 10

v
~N

If x=0 were the absolute minimum of V, that is to say, if V

vere as shown in Fig. 1la, we would have, for the same path, the

situation shown in Fig. 1lb, and there would be no divergence In
Eg. (2.48).

Now let us suppose we analytically change V in some

)=

Figure 12

an imaginary part; in the steepest-descent approximation,
1He~ ., i
1n] « Im] dz(2nh) " oSN -3 (1) (2-1)

! (2.52)
- *e-s(l)mlsu(l)l“f .

wav such that we go from this situation back to the one of intercst. Note the factor of ¥; this arises because the integration is over
r.
To kevp the integral convergent, we must distort the right-hand

portion of the contour of Integration into the complex plane. How

only half of the Gaussian peak.

(If we had passed from one potential to the other in the con-

we distort it depends on the details of the analytic passage from jugate manner, the contour would have been distorted into the lower
In Fig. 12, 1 have assumed that it is

one potential to the other.

distorted
codure of
aboag the

a tine of

into the upper half plane.

Following the standard pro-

the method of steepest descents, I have led the contour

real axis to z=1, the saddle point, and then out aloang

constaat imaginary part of S,

AV

)

v
»

Figuore 11

The integral thus acquires

J\s

» I

(b)

half plane, and we would have obtained the opposite sign for the
imaginary part. This is just a reflection of the well-known fact
that what sigu‘you get for the imaginary part of the energy of an
unstable state depends on how you do your analytic continuation.)

Now, we Bave studied a one~dimensional integral, but we can
always reduce our functional integral to a one~dimensional in-
tegral simply sy integrating {in the Gaussian approximation) over
all the variables orthogonal to our path. These directions'involve
only positive or zero eigenvalues near the stationary point and
give us no trouble. In this manner we obtain Sagredo's answer,
Eq. (2.48), except that the negative eigeévalue carries a factor
of § with iF; that 1s to say, we cobtain Eq. {2.49),
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117, THE VACUUM STRUCTURE OF GAUGE FIELD THEORIES’®

J.1 0ld Sruff

This subsection {8 a telegraphic comperndium of formulas from

gauge field theories, 1ts purpose is to astablish notational con-

ventions and passibly to jog your memory. If you don't already

know the fundamentals of gauge field theory, you won't learn them

here.?®

Lie Alpebras. A representation of Lie algegra is a set of N

anti-Hermitian matrices, Ta, a=1.., N, obeying the equations

<

b
(1?,1°) = 3P 1°, (3.1)

where the c's are the structure constants of some compact Lie group,
G. It is alvays possible to choose the T's such that Tr(TaTb) is
propartional tco éab, although the constant of proportionality may
depend on the representation.
by

The Cartan inner product is defined

(1*,1%) = 57, (3.2)
Thus this is proportional to the trace of the product of the

matrices.
So far T have not stated a convention that gives a scale to the
For SU(2), the case I will

spend most time discussing, 1 will choose cabc to be equal to €abc.

structure constants and thus to the T's,

Thus, for the isospinor representation,

T -« -10%/2 , (3.3)
where the 0's are the Pauli spln matrices. In this case,
(12,1%) = —21c¢1? 1Y) . (3.4)
Occasionally I will discuss SU{n), in particular SU(3). In

this case 1 will choose the structure constants to agree with the
preceding convention for the SU(2) subgroup composed of unitary
Thus, for SU(3),

¥ is *ika/2, where the A's are Gell-Mann's matrices.

unimodular transformations on two variables only.
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Gauge Fields. The gauge potentials are a set of vector flelds,

A:(x). It is convenient to define a matrix-valued vector field,
'Au(x) » bY

a,.a
= gA"T 3.5
A=A T, (3.5
where g is a constant called the gauge coupling constant. The
field-strength tensor, Fuv(x)' is defined by
- Al . 3.6
oy " A, - A, + [ALA) (3.6}
Pure gavge field theory is defined by the Euclidean actiom,
---—1 &
s T Jd X(Fuv'Fuv) . (3.7)
Sometimes I will write this in a shorthand form,
« Lo [ (52 3.8
5 gt J(F ) (3.8

Gauge Transformations. A gauge transformation is a function,

g(x), from Euclidean space into the gauge group, G. In equations,

g(x) = exp AT, (3.9)

where the 'A'S are arbitrary functions. (Please do not confuse gi(x)
with the compling constant, g.} Under such a transformation,

A +gh gt +gd g7, (3.10)

and . K s M
-1 3.11
Fuu-v ngvg . ( )

Thus, S is gauge-invariant. If FW vanishes, then Au is a gauge-

transform of zere; that is to say,

A =gd gt (3.12)
u B 118 ]
for some g(x).

Cov;fiant perivatives., The covariant derivative of the field

strength tensor is defined by

- N 3.13
Dl Fuv BA FH\J + [AA'Fu\J] ( )
Equation (3.7) leads to the Euclidean equations of motion

DF =0, (3.14)
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Given a field y that gauge-transforms according to
v+ g0y (3.15)
then the covariant derivative of ¥,
D na + A 3.1
AN RN (3.16)

transforms in the same way.
3.2 The Winding Number

I propose to study Euclidean gauge field configurations of
finite action (not necessarily solutions of the equations of wotion}.
Why?

The naive answer, sometimes given in the literature,llis that

configurations of infinite action are unimportant in the functional

integral, since, for such configurations, e—S}“ is zero. This e

wrong, In fact, it is configuratioans of finite action that are
unimportant; to be precise, they form a set of measure zero in
function space. This has nothing to do with the divergences of
quantum field theory; it is truve even for the ordinary harmonic
poscillator. (For a proof, see Appendix C.) The only reason we are
interested in configurations of finite action 1s that we are in-
terested in doing semiclassical approximations, and a configuration
of infinite action does indeed give zero if it 4s used as the
center point of a Gaussian integral.

The convergence of the action integral is controlled by the
behavior of Au for large r, where r is the radial variable in
Euclidean four-space. To keep my arguments as simple as possible,

1 will assume that, for large r, Au can be expanded in an asymptotic
series in inverse powers of r.. (This assumption can._be relaxed con-
siderably without altering the conclusions.2) Thus, for the action
to be finite, F  must fall off faster than 1/r? as r goes to in-
must be 0{1/r ).

is that this implies that A is 0¢1/r?), but this is wrong: vanishing

finity; that is to say, FUV One's first thought
Fuv does not imply vanishing Au, but merely that Au is a gauge

transform of zero. Thus Au can be of the form

-26~

- -1 z
Au gaug + 0Q1/r°) ,

where g 18 a function from four-space to G of order one, that i{s to

{3.17)

say, a function of angular variables only.

Thﬁb;_gith'evefy finite-action field configuration there is
associaféﬂ ?lgroup-element-valued function of angular variables,
that. 1s ;o'hiy, 8 mapping of a three-dimensional hypersphere, S°,
ihto-thé?gahﬁe group, G. Of course, this assignment i3 not gauge
i{nvariant. Under a gauge transformation, h{x)

-1 ; -l
A+ bART +03 bt

g~ hg +0(1/r?) .

(3.18)
Thus,

(3.19)
If one could choose h to equal g~' at infinity, one could
transform g to one end eliminate it from Eq. (3.17). In general,
though, this is not possible. The reason is that h must be a con-

tinuous function not just on the hypersphere at infinity, but
throughout all four-space, that is to say, on a nested family of
hyperspheres going all the way from r equals zero to r equals in-
finity.

pendent of angles,

In particular, at the origin, h must be a constant, inde-
Thus, h at Infinity can not be a general func~-
tion on-S?, but must be one that can be obtained by continuous
deformation from a constant function. Since any constant gauge
transfornmatfon can trivially be obtained by continuous deformation
from the.identity transformation (all gauge groups are conmnected),
we might as well say that h at infinity must be obtainable from
h=1l by.; continuous deformation.

Given'two mappings of one topological space into another, such
that one mapping 1s continuously deformable into another, mathe-
maticians say the two functions are "homotopic” or "in the same
homotopg_qléés"._ What we have shown is that by a gauge transforma-
tion we can transform g(x) into any mapping homotopic to g{x}, but
we can not transform it into a function in another homotopy class.
Thus, the gauge-invariant quantity associated with a finite-action
field configuration is not a mapping of $? to G but a homotopy class
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of such mappings. Our task is to find these homotopy classes for
physically interesting G's.

To warm up for this task, let me consider a baby version of
the problem for which the geometry is somewhat easier to visualize,
I will work with the simplest of all gauge groups, U(l), the group
of complex numbers of unit wodulus, Thus the gauge field theory
is ordinary electromagnetism. (However, 1 will still keep to the
notational conventions established in Sec. 3.1; in particular, Au
will be an imaginary gquantity, i times the usual vector potential.)
Also, I will work not in Euclidean four-space but in Euclidean two-
space. I will still study [ields obeying Eq. (3.17), although, of
course, in two-space this condition is not a consequence of finite-
ness of the action. Because we are working in two-space, we have,
instead of a hypersphere, s?, an ordinary circle, st.

Now to work:

(1) ©C is the unit circle in the complex plane; thus, topolog-
ically, G is also S‘, and we have to study homotopy classes of map-
pings of 8! into §'. We will label the circle in space, the domain
of our functions, in the standard way, by an angle & ranging from
¢ to 27m.

(2) 1t will be useful to define some standard mappings from

8! to 8, Ome is the trivial mapping,

g% <1

(3.20a)
Another is the identity mapping,
gy = 10, (3.20b)
These are both part of a family of mappings,
£ = 5@ = MY (3.200)

wvhere V 1s an integer (positive, negative, or zero). Vv s called
"the winding number’, because It is the number of times we wind
arvound G when we go cnce around the circle at infinity in two-space.

(By convention, winding around minus once means winding around once
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in the negative direction.)

(3) Evexy mapping from s! to 8! 1s homotoplc to one of the
mappings (3.20c). We do not have the mathematical machimery to
prove this}tiﬁorously, but I hope I can made it plausible. Imagine
gaking_ﬁ rubber band and marking on it in Ink a sequence of values
of © runiing from O to 27, We then wrap the band about a circle
represen;iﬁg G, such that each value of 8 lies above the point into
which it is mapped. (Figure 13 shows such a construction.) We can
continuoﬁgi}lé;fo}m the band, first to eliminate any folds, like
the one oﬁgfhé top of the figure, and second to stretch the band so
1t lies uniformly on the circle, In this way we obtain some g(”)(e).

(1)

{In the case shown, we obtain g .) Thus we can associate a wind-

ing number with every mapping. (Note that I have not yet shown that
this number is uwniquely defined.)

(4) 1 will vow show that the winding number defined above is
given by the 1ntegrai formula

i (3.21)

2n :
J dfgdg™i/de .

Vo=
: [}

Firstly, by direct calculation, this gives the right answer for the

standard mappings, Eq. (3.20c). Secondly, this quanticy is invariant

3n/2

o

Figure 13
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under continuoes deformations. To prove this assertion it suffices

to demonstrate invariance under infinitesimal deformations. A gen-
eral infinitesimal deformation is of the form
§g = 1(80)g , (3.22)
where 61 is some infinitesimal real function on the circle, Thus
6(gdg™1/d0) = -1d(6A)/d6 , (3.23)

and the change in v vanishes upon integration., (We now know that
all of our standard mappings are in different homotopy classes and
that the winding number is uniquely defined.)

{5) If

8(8) = g,(8)g, (D) , - (3.24a)

then

Ve Y, (3.24b)

Thg proof is simple: The winding number is unchanged by continuocus
deformations. We can deform 8; such that it is equal to one on the
upper half of the circle (058 <7m) and g, such that it i{s equal to
one on the lower half of the circle (1 <0 <2m). The integrand in
Eq. (3.21) is then the sum of a part due to g, {vanishing on the
upper semicircle} and a part due to g, (vanishing on the lower semi-

circle).

(6) Let ug define N
GIJ = '{E.Euvﬁ.\’ . (3.25)
By Eqs. (3.17) and (3.21),
an
veli det
r+2 I r ruGu , €3.26)
where ?u is the radial unit vector. Thus, by Gauss's theorem,
v = |d? .
[ xBUGu (3.2
Hence,
v =~ [a%xe F 8
4w wopv " (3.28)
1 will now return to four-space, and take € to be SU(2). As we

shall see, every argument will be a (mild) generalization of the
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arguments I have given for the baby problem.

(1)

§

matrices;

SU(2) is the group of unitary unimodular two-by-two
It is well known that any such matrix can be uniquely
written in the form . .
g = a+ibsd , (3.29)
where a®+|b|? = 1. Thus,topologically, SU(2) is S°, and we have
to study homotopy classes of mappings from S? to S,

{2) It will be useful to define some standard mappings from

8% vo S’.‘ One is the trivial mapping,

gco)(x) =1 . (3.30a)
Another is the identity mapping,
80 = (x, #1200 /x (3.30b)
These are both part of a family of mappings,
eV = 1gM 01V . (3.30¢)

where V 1s an integer, called the winding number. (It is also soﬁe-
times called the Pontryagin index.) It measures the number of times
the hypersphere at fnfinity is wrapped around G. (By convention,
we say the hypersphere is wrapped around G in a negative sense if a
right-~handed triad of tangent vectors is mapped into a left-handed
triad.)

3) Every mapping from 5% to 5* is homotopic to one of our
standard mappings (3.30c¢). We do not have the mathematical machin- -
ery to prove this assertion rigorously, but a plausibility argument
can be céns:ructed Just as in the baby problem, with hyperspheres
replacing circles. (If you have problems eavisioning hyperspheres
wrapped around hyperspheres, just accept the assertion on faith.)

In this way we can associate a winding number with every mapping.
(Note that I have not yet shown that this number is uniquely defined.)
(4) Let us define

1

ijk - - -
Ideld92d93€ d (gaig L% gajg lgakg .



vhere 9,, 7, and 8, are three angles that paramcterize 5%, How

these angles ave chosen is irvelevant to Eq. (3.31); the Jacobian
determinant that comes from changing the angles is canceled by the
Jacobian determinant from the e-symuol. Equation (3.31) is written
using the fartau inner product, thar is teo say, in a representation-
independent way. Of course, for any particular representation of
§U(2), we van rvewrite Eq, (3,31) in terms of traces; for example,

for the two dimensional representation, by Eq. (3.4),

i 1i% 0 wi a = .
Yoz o [deldﬁzdelTrE 838 'gajg ‘gakg !

St | (3.32}

I will show that this quantity s, firstly, a homotopy invari-
ant, and secondly, agrees with the winding nuwber as defined for
our standa:d mappings. As before, a corollary of this procf will
be that all ef our standard mappings are in different homotopy
classes

To

and that the winding number fs uniquely defiped.

¢how invariance under zontinuous deformations it suffices
to show i{ovariance under infinitesimeal deformations, For any Lie
group, a general infinitesimal transformation can be written as an

infinitesizal right mulciplication:

83 = g8a ()T = gbT (3.33)
Under this transformation, .
s(gakg-‘) = -g(3,6T)g"" . (3.34)

The three derivatives in Eq. (3.32) make equal contributions to &v;

thus, 1k _
sy o JdB‘dGZdesc Trgd, g ‘gajg"g(skél‘)g"1 {3.35)
If we use the identity,
0 =3 (sg”") = gd;g™ ' + (3,387 , (3.36)
this becomes
ik -
Sv = Jd@ldezdeae i Traig lngakﬁT . (3.37)

which vanishes upon intcgration by parcs, because of the antisym-

metty of the g-symbol., This completes the proof of invariance under

‘tionally defined by

continuous deformations.

{5} Now to evaluate Eq., (3.32) for our standard mappings. The
task is easiest for g(‘). for the integrand is here obviously a
_constant, and ve need evaluate it only at the north pole of the
unit hypersphere, x, =1, xi--O. At this point we might as well
choose Bi,to equal X Thus, from Eq. (3.30b),
-1 [
89,8 io, , (3.38)
and
Treijkgaig*‘gajg-‘gakg“’ =-12 . (3.39)

Since the area of a unit hypersphere is 2mW?, we obtain the desired
result, vml,
For the other standard mappings, the simplest way to proceed

is to observe that if

g = 8,8, £3.40a)

then

(L IANE SV (3.40b)

The argument is the same as for the baby problem, with semihyper-
spheres replacing semicircles.
(6) Let us define

a 2
Gu ZEUVAG(AV,BAA0+-;AAAG) . (3.41)
A straightforward computation shows that
9,6, = .%euvAG(Fuv’FAo) . (3.42)

The dual of an antisymmetric tensor (denoted by a tilde) is conven-

- 43
P Puv 1 euvkchd (3.43)
(The £actor Of § is inserted in the definition so that F = F.)
Equatioﬁ“?3fh2)'éanﬁthus be rewritten as
LT - (F F )= (FF) . 3.44
s 3.6, = (F . F ) = (F.F) (3.44)
From the,defiﬁicion of Fuv’
o - - . 4
Gu euuAc(Av’FAo lgAkAd) (3.45)

2
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This expression is useful in evaluating

[d“x(F,E) = Jd’s? G,

uCy (3.46)

where 4’5 is the element of area on a large hypersphere. The first
term in Eq. {3.45) is 0(1/r") and makes no contribution to the in-
tegral; the second term simply gives (up to a multiplicative con-
stant) the integral formula for the winding number, Eq. (3.31).

Thus we obtain

Jd‘x(?,?) = 3212y . (3.47)

Summary and Generalizations. This has been a long analysis,

and you may have lost track of what we were doing, so let me sum-
marize the main results of this subsection: For a gauge field theory
based on the group SU(2), every field configuration of finite action
in four~dimensional Eueclidean space has an integer associated with
it, the Portryagin index or winding uumber, V. It is not possible
t6 continuously deform a configuration of one winding number into
one of a different winding number while maintaining the finitcness
of the action. We have two integral formulas for the winding number,
one in terms of a surface integral over a large sphere, Eq. (3,31},
and one in terms of a volume integral over all four-space, Eq. (3.47)
How much of this depends on the gauge group being su(2)?
Firstly, {f the gauge group is U{l), it is easy to see that every
mapping of 8% into U(1) is continuously deformable into the trivial

mapping {all of $? mapped inte a single point). Thus, for an

abelian gaw:e field theory, there is no analog of the winding

nwnber,  Sccondly, for a general simple Lie group, G, there 1s a
rematrkable theorem due to Raoul Bott™ that states that any continu-
ous mapping of 37 iato G can be continucusly deformed into a mapping
into an SUC2) subgroup of G. Thus, everytining we have discoverad
fap SU(2) 1o true for an arbitrary simple Lie group; in particuilar,
it is true for SU(n). 1 stress that “everything" means everything;
ln particuiar, not a single numerical factor in the integral for-
mulas for the winding number needs alteratiom, so long as we choose

the normalization of the Cartan ipnmer product appropriately (as we

o ()

have). Finally, since a general compact Lie group is locally the
direct prodﬁct of an Abelian group and a string of simple groups,
for a general gauge field theovy, there ig an independent winding
number fb;- gvery simple factor growp.

wimg

3.3 Many Vacua

.Hg'hﬁ;e learned a lot about classical gauge fiéld theories;
now it is time to confront the quantum theory. In principle, the
Euclidean functional integral tells how to go from the classical
theory to the quantum theory. As I explained in Sec. 2, we can use
the funictional Integral to study the energy eigenstates of the the-
ory; also, by adding appropriate source terms to the Hamilronian
{equivalently, to the Euclidean action) and then differentiating
with respect to the sources at the end of the computation, we can
study the expectation values of strings of operators, Euclidean
Green's functions. However, for gauge field theories, there is a
famous complication: to make the functional integral well~defined,
we myst impose a gauge-fixing condition.™

I will choose to work in axial gauge, A, = 0. I have several
reasons for this choicei (1) It is possible to show™ that every non-
singular gauge field configuration can be put in axial gauge by a
non-singular gauge transformation. It is by no means clear whether

(2)

the functional integral is directly equivalent to a canonical for-

this is true for covariant gauges, for exsmple. In axial gauge
mulation of the theory;“ there is no need of the ghost terms that
occur in covariant gauges, or of the subsidiary conditions on the
{3) Most

of the treatment in the literature of the phenomena we are about to

space of states that are needed in such gauges as A, = 0.

discuss 18 in the gauge A, = 0. It's nice to show explicitly that

(4)

gavge 1s terribly awkward for specific computations, once we havo

the answers don't depend on this gauge choice, Although axial
obtained functional-integral expressions for quantities of intevest,
we can use the standard Fadeev-Popov methods to transform these into

some more convenient gauge.



-35=-

in €icld theory, we normally plunge directly into infinite
space. However, I will here study gauge field theory in a finite
box of three-yolume V, with definite boundary conditiong, which 1
shall specify shortly. Just as in Sec, 2, I will also restrict the
theory to a finite range of Euclidean time, T, with appropriate
boundary conditions at initial and final times. Thus we are in-
tegrating over a box in Euclidean four-space, with boundary condi-

tions on the {three-dimensional) walls of the box. Of course, 1

will eventually send both V and T to infinity. I again have reasons

for this choice: (1) Certainly nothing is lost by beginning in a
finite box; if the transition to infinite space goes smoothly, at
worst we will have wasted a little time. (2) In some theoriés, ve
can gain information about the structure of the theorf by seeing
how things depend on the boundary conditions imposed on the walls
of the box. For example, in a scalar field theory with spontaneous
symetry breakdown, the expectation value of the scalar field in the
center of the box depends on the boundary conditions on the walls,
no matter how large the box; this is one of the easiest ways to see
that the theory has many vacua. (3) In the canonical guantization
To

do'this, it is necessary to find Aulfrom aiao. In infinite space,

of the theory, it is necessary to eliminate A, from the action.
]

this problem has many solutions; this ambiguity is usually resolved
by applying ad foe conditions on the behavior of A, at infinity.

In a box with appropriate boundary conditions, this problem always
has a unique solutien,

There are many possible types of boundary conditions we could
impose: we could fix some components of AU' some componcents of Fuv,
seme combinations of these, etc. A clue to a wise choice of bound-
ary conditions is given by the surface term in the expression for
the variation of the actlon, For example, for a free scalar field

theory,

58 = Id’sn”au¢5¢ Foeee (3.48)

Here, 4°S is the element of surface area, & is the normal vector

to the surface, and the triple dots denote the usual volume integral
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of the Euler*LéQfénge equations.“'From this expression we see that
one way to make the surface terms vanish is to fix the value of ¢

on the walls of the box. Likewise, for a gauge field theory,

. W P v
8 = o3 ]d Sn'F SAT 4 .. (3.49)

From this expression we see that one way to make the surface term
vanish is to fix the tangential components of Au on the surface.

Note that there i{s no need to fix the noxmal component of Au; be-

cause Fuv

face integral.

is antisymmetric, this makes no contribution te the sur-

We are not totally free to choose the tangential components of
Au arbitrarily. Firstly, they must be chosen consistent with our
gauge condition, A, = 0. Secondly, because we want to do semi-
classical computations, we must choose our boundary conditions to
be consistent with finiteness of the action, as the box goes to
infinity. Equivalently, the boundary conditions must be consistent
with the box being filled with a field configuration of a definite
winding .number. Furthermere, for fixed boundary conditions, this
winding number 18 fixed, for only the tangential components of Ay
are needed to compute the normal component of GU' [See Eq. ?3.4i).]

Thus at least one relic of our boundary conditions remains no
matter how large the box: we can not put an arblitrary finite=-action
field configuration in the box, but only one of a definite winding
aumber. It turns out that the winding number is the only relie of
the boundary conditions that survives as the box goes to infinity.
The hand-waving argument for this is that the winding number i{s the
only gauge-invariamt quantity assoclated with the large-distance
behavior of the fields., If you do not find this argument convinc-
ing, you will find a more careful one in Appendix D.

Thus, for large boxes, we can forget about the boundary condi-
tions in the functional integral and simply integrate over all con-
figurations where the winding aumber, v, has some definite value, n.

I will denote the result of such an integration by F(V,T,n). In
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equations,

FV,T,n) = N[[d}\]e_sé\m ) (3.50)

where [dA)] denotes {dA‘][dAz]{dAk]. Alsa, I have set 4 to cnej we
can always keep track of the powers of 4f by keeping track of the
povers ol g, as explained in Sec. 1,

F(V,T,n) 1s a transition matrix element from some initial state
to some final state (determined by our boundary conditions). What
these states are will not be important to us. What is important is

that for large times, 'I‘1 and T,,

F(V,T, +T,50) = 1 F(V,T,,0)F(V,T,,0,) .

niny,=n

(3.47), the expression for the winding number

{3.51)

This follows from Eq,
as the integral of a local density; this tells us that the way to
put total winding nurber n in a large box is to put winding number
n, In one part of the box and winding number n, in the remainder of
the box, with n = n,+n,. {0f course, such counting misses field
configurations with significant action density on the bouudafy be-
twezn the two sub-boxes, for there is no reason for the winding-
nunber integral for each sub-box Lo be ap integer for such config-
urations. However, we expect this.to be a negligible surface ef-
fect for sufficiently large boxes.)

Precry as it is, Eq. (3.51) is not what we would expect from a
transition-macrix element that has a contribution from only a single
energy elgonstate. Such an object would be a simple exponential,
and would vbey a multiplicative composition law for large times, not
the convelutive composition law of Eq. (3.51). However, it is easy
encugh to turn convolutioﬁs into multiplications. The technique is
called Fourier transformation: %
efnﬁ F(V,T,n} i
-Seive

F(v,7,0) = §
n
N

#

f [dAle . {3.52)
From Eq. (3.51),

F(V,T +T,,6)

F(V,T,,0)F(V,T,,0) . (3.53)

-8

This is the correct compositicn law for a simple exponential, Thus

we identify F{V,T,0) as being (up to a normalization constant) the
expectation value of e"HT in an energy eigenstate, which we denote

by {6> and call the & vacuum.
. F(V,T,0) = <8le " |o>
- N'J[dA]e-seive .

where N' 18 a new normalization constant.

(3.54)

Our analysis has been simple and straightforward (I hope), but
we have been led to a very unintuitive conclusion. Our original
gaugg,ii@l@ theory seems to have split up into a family of discon-
nected sectors, labeled by the angle e, each with its own vacuum.
Furthermore, in each of these sectors, the computational rules are
the agmeﬁés those we would have naively written down if we had not
gone through any of this analysis, except that an extra term, pro-
portioﬁal_to (F,¥}, has been added to the Lagrangian density.
Probably half the people who have played with gauge field theories
have‘thought, at one time or another, of adding such a term, and
they have discarded the possibility, because the added term is a
total divergence [see Eq. (3.44)) and thus has no effect on the
equations of motion and therefore "obvicusly" has no effect on the
physics of the theory. Of course, at this stage in our investipa-
tion, it is still possible that we have been fooling ourselves,
that the extra term indeed has no effect on the physics, and that
all the @ vacua we think we have discovered are simply duplicates
of the same state. We shall eliminaie this possibility immediately.

, {T should remark that what we have done here closely parallels
the;freatmeﬁt of .a periodic potential in See. 2.3, except the argu-
ments are somewhat more abstract and im a diffevent order. The
winding number is something like the total change in x (the differ~
ence between the number of instantons and the number of anti-
instantons) in Sec. 2.3, and the 8 vacua are something like the |6>

eigenstates, The two big differences are that we found the analogs
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of the [6> states without pausiag to talk about the analogs of the
|j> states, and that we did the Fourier transform that untangled
the energy spectrum before we saturated the functienal integral
with instantons. The first differcnce is unimportant; 1f I had
wanted to, I could have added two extra paragraphs when I was talk~
ing_about F(V,T,n) and discussed the analogs of the |j> states,
(They're called n vacua.) As for the instantons, they are the sub-
ject of the next subsection.]

3.4 Instantons: Generalities

In the next subsection I shall explicitly construct instento%s,
finite~action selutions of the Euclidean gauge~field equations with
v = 1. Most of the qualitative consequences of these solutions a;e
independent of their detailed structure and follow merely from the
fact of their existence. Therefore, in this subsection, I will
simply assume that instantons exist and draw some conclusions from
this assumption,

1 will denote the action of an instanton by S,. .Because §,
is finite, the instanton can not be invariant under spatial trans-
lations. Thus there exists at least a four-parameter family of in-
stanton solutions; I will call these parameters '"the location of
the center of the instanton”. The wiﬂding number is parity-odd,
Thus there must also exist at least a four-parameter family of solu-
tions with v = -1, the parity transforms of the ilnstanton soluticns,
which 1 will call anti~instantons. Just as in Sec, 2, we can build
approximate solutions consisting of n instantons and n anti-
{nstantons, with their centers at arbitrary widely-separated loca-
tions. These approximate solutions have v = n -,

Again as in Sec. 2, we approximate Eq. (3.54) by'summing over

all these configurations. Thus we obtain

<al fﬂ!;!

RULITSO) (ke S0y (yr) BT eiFn~ﬁ)6
n,T

= exp(2KVTehs° cos 6) , {3.55)

where K is a determinental factor, defined as in Sec. 2. Thus, the
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energy of a 8 vacuym is given by

E(8)/V = -2k cos B e o0 (3.56)

Note that, as should be the case in a field theory, the different
vacua are distinguished not by different energles, but by different
energy densities. {[Also note the similarity with the energy spee-~
trum of a periodic potential, Eq. {2.45).]

¥e éan go on and compute the expectation values of various

operators. A particularly easy (and particularly instructive)

computation is that of the expectation value of (F.F). By trans-
lational invariance, *

<B| (P(x),F(x)} |6> = vl,-r-Jd"x<6|(F,§)iﬂ> . (3.57)
Thus, by Eg. (3.47), S 10

- 2 -~
<B|(r, P [0> = 2 “‘*“"_es o
: VT[{dAle e
32ny d < =S 1v9
~ - =57 55 Mn(fldaJe e ™) (3.58)

Hence theig.ﬁs_no need to do a fresh summation over a dilute in-
stanton - anti-instanton gas, since we have just evaluated the
quantitysin bﬁxentheses in Eq. (3.55. Thus in our approximation,

S

<8|(F,F)|8> = ~647%1Ke 0 sin 0 , (3.59)

Some comments:

(1) ~The expectation value is independent of V and T, as it
should be.

(2) | The expectation value is an imaginary number, again as it

should be, The reason 1s that

(F,F) = (F,,,F,,) + pernutations (3.60)

When we continue from Euclidean space to Minkowski space, F,, ve-
mains F,,, but, just as x, becomes ix,, so does F, become i¥y, .
Thus, if we had cbtained a resl answer, we would have found that in
Minkowski space (the real world) a Hermitian operator would have

had an 1maginary vacuum expectation value, a disaster.
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{3} Both the vacuum encrgy dvasity and the vacuum expectation
value depand nov-trivially on €6, Tos the 3 vacua are indeed all
different

3.5

trom zach ozher.

Instantons: Particulars

fa*x(F,F)y = [Jd"x(F ppjd“x(F,F)]*
= [fa"xz FY] (3.61)

by the Schwartz inequality. Thus, fur any winding number, we have

an absolute lower bound on the acticn,

LA
§ 2 gz'i“1 (3.62)
Furthermove, equallity is attained if and only if
F o= &F {3.63)

where the posivive (nepative) sign bLolds for positive (negative) v,

This inequallty was first deti »d by Belavin, Polyakov, .
who used it to search for instantons. Their
{3.6%).

¢xist, they are minima of the action for fixed winding number, and

schwarz, and Tyupkin,q

idea was to look for solutions of fc. If such solutions

thus statiopary polnts of the actiecr ucder local variations, that

is to say, solutions of the field e sations. Furthermore, since

they hav - lower actioa than any other solutions of the same winding
aumbezt (i f other solutions exist), i~cy dominate the functional in-
tegral, and, {oT our purposes, arc

Eq.

“ 1 wnly solutions we need worry

about . #Finally, as a bonus, Is a first-order d4ifferen-

(s =3
cial equirion aud considerably mor. [ractablie than the gecond-order
tield eqgrations.

fet us begln the search with v = 1. We know that any field

eonl Jgoration with v = 1 can be goo --transformed such that

1). 1.1
aoe et 0 oty (3.64)
H W ¥
wh ru 1 X wLRTO
g( ) _1~17~w* (3.65)
Eguation 3,641 Is rerationally invaviant, ia the sense that the
affert o0 anv lour-dimensional roraifen san be undone by an

_statement that a rotation is a contlnuous deformation and

wly -
appropriate gauge transformation. This is a consequence of the

thus does
not change the winding number. There is also a short direct proof:

Under a general rotation

(1)

(1) =~
b4 +gg h

’ (3.66)

where g and h are elements of SU(2) determined by the rotation.
[Tﬁis is a standard formula; it is the usual way of demonstrating
the isomorphism between S0(4) and su{2) @ su(2}.] Thus,

A gAug“ +0(1/c?) . (3.67)

This, as promised, can be undone by a pauge transformatiun, indeed,
by a gauge transformation of the first kind, a constant gauge
transformation.

This suggests that we search for a solution of Eq. {3.63) that
is rotationally invariant in the same sense. That is tc say, we
make the ansatz,

A =M s (3.68)

where, to avoid a singularity, f must vanish at the oripin. Fron

here on it's straightforward plug-in-and-crank, which T will spare

you. It turns out that we do indeed obtain a solution in this way,
if 2

= .69

f=7 +p7 (3.69)

where p is an arbitrary constant, called "the slze of tie instan-
ton". The existence of solutions of arbicrary sizes 1s a4 necessaiy
consequence of the scale invariance of ‘the classical f{cid theory.
(This fact will occasion some cmbarrassment shortly.)
Once we have a solution to any field theory, we car obtain aew
solutions by applying the invariances of the theory. [+ the casn
at hand, these are generated by (1) scale transformations,
(2) rotations, (3} the four-parameter group of sparial transla-
tions, {4) the four-parameter group of special conformal transfor-
mations, and {3) gauge transformations. Scale transformitions

simply change the size of the instanton: thus they just shift arcund
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the members of our onc-parameter family of solutions but generate
no new solutions. Rotations, as I have shown, can always be undone
by gauge transforpations. Spatial translations generate genuinely
new solutions, and give us four more parameters, "the location of
the center of the instanton”. Although I do not have time to
demonstrvate 1t here, It turms out® that special conformal transfor-
mations can be undone by gauge transformations and translations.
Cauge tvansformationms, as usual, vequire special consideration.
1t is easy to see that any non-trivial gauge transformation changes
{3.68): Recause gcl)is a function of angles only, the radlal compo-

nent of A , Ar' vanishes. Thus, under a fenerzl non-singular gauge

U
transformation, g{x),

1

- -1 -1 L -1
A > AT +gd g

gd g - (3.70)

Hence, if the gauge transformation is not to change Au, g must be
independent of r. That is to say, its value everywhere nmust be its
value at the origin; g must be a constant gauge transformation.

But the only constant gauge transformation that leaves Au unchanged
is the identity. (Remember, the effect of a constant gauge trans—
formation is the same as that of a rotation.)

You might think that this discussfon of gauge transformations
is irvelevant. After all, when we do the quantum theory, we must
work In a fixed gauge, such as axial gauge, and it is commonly said
that once wo have fixed tHe gauge we have no freedom to make gauge
transformations. However, although commonly said, this is net
strictly true; all standard gauges srill allow constant gauge
transformations.® This is as it should be. Constant gauge trans-—
formations act like ordimary svmmetries; they put particles iamto
multiplets (if therc is no spontaneous symmetry breakdown), impose
Thus,

formulation of the theory, they should remain as manifest symmettries

selection rules on scattering processes, etc, in a sensible

of the Hsmiltonian. Whether you accept this philosophy or not, the
fact remains that constant gauge transformation applied to an in-

atanten solution {transformed to obey the gauge conditions) will:

wlylym

generate a different solution still obeying the gauge conditions.
Thus we have found an elght-parameter family of sclutions, one
parameteé?from scale transformations, four from translations, and
three frg%“ESnétant gauge transformations,

Are there other solutions with unit winding number? Atiyah
and Fard” state that there are none. I can not give their proof
here because I do not understand it. Nevertheless, mathematicians
I trust say that their argument is not only legitimate but bril-
liant, s0 let us assume they are right and centinue.

Solutions of higher winding number (if they exist} are of no
interest to us. Wehave used approximate solutions consisting of m
widely sepafated objects (instantons or anti-instantons) to evalu-
ate the functional integral. These approximate solutions depend
on 8n parameters, 8 for each object. Now suppose there are exact
solutions that can be interpreted as n objects; that is to say,
they deﬁend on 8n (or fewer) parameters and become our approximate
solut}ous when some of rhe parameters (the separations between the
objects) Secome large. Iﬁ this case, all we learn by knowing these
exact solutions exist is that the dilute-gas approximation 1s better
than we think it is -but we already know that it is good enough for
our purposes. There might also be exact solutions that can hot be
1nterpre£éa in this way. To have a definite example, let me suppose
there were a "binstanton”, a brand-new solution of winding number
two. Then in evaluating the functibnal integral, we would have to
sum over a dilute gas of instantons, anti-instantons, binstantons,

and anti-binstantons. Thus, Eq. (3.56) would be replaced by

E(8)/V = ~2Kcosfe -0

-2K'cos 20”50 (3.71)
where the primed quantities are the action and determinantal factor
for a binstanton. But §; is twice 3;, so the new term is exponen-
tially small compared to the old one and should be neglected.?

3.6 The Eggiuation of the Determinant and an Infrared Embarrassment

We now know enough to go a long way towards explicitly evalu-
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ating the tight-hand side of Egq. (3.536),
(1) s, is 8n?/g’
{Z) We have an eight~parameter family of solutions and thus

eight elpecmodes of ef{genvalue zero in the small-vibration problem.

Thus ¥ contains a factor of (1/VA)?, or, equivalently 1/g®

thing =1=
()]

The ini2zral over constant gauge transfeormations is an integral

Every-
2 ia K is independent of 4, and thus independent of g.

e have already done the integral over instanton locations

over a cempact group and thus gives only a constant numerical fac-
tor, the volume of SU{2)., The integral over instanton sizes is

potentially troublesome, since p can be anywhere between zero and
for the mowx.

infinity, s0 we will, i, keep it as an explicit inte-

gral.
{¢) hius we cbrain -
bl
~Entg? { \

E(8)/V = ~cosBe “"E B} S8 fiomy (3.72)
where 1 L. an unknown function and # is the arbitrary mass (more
properly, arbitvary inverse waveleogth) that is needed to define
the r-woimalizatien prescription in a msssless field theory., (1

have avoirded wentioning remormalization unt!l now, but renormaliza-
tion i: essential in any computation that invclves an infinite
51 will give a

number of eipcamodes, as does this cvne. In Sec.

1

wore ¢oi..led discusslon of the ultraviolet divergences in deter-
minant el ciors and thelr remeval Ly the usval one-loop Trenormal-
ization .cuntevterms.} The form of the integral is determined by

dimeneionl analysls) an energy density has dimensions of
- 3
i/(Leath)”

{5y towever, M and g are not independent parameters. Renor-

malizaticr-group analysisn tells us that they must enter expressions
& Y P

{or observable quantities only in the combination

=5~ B, It + 0(3%) , (3.7

vhere Ea iz a coefficient which can be computed from one-loop

-l
perturbatiqn theory. In the case at hand, B, is 11/12n?
This fixés the form of f. Thus,
5 (e)lv . -Acosge 0" /8" -°r~9 o8B 1 407y,
- (3.74)

where K7ts a3constant independent of g,p, and M.

{7?ﬁ”§§$determine A requires a lot of hard work,” so 1'1l stop
the calculation here._ Even though we haven't been able to carry
things out to the end, it's remarkable how far we have been able to
go with so little effort.

“Ne doubt you have noticed that the integral we have derived is
infrared divergent. The origin of the divergence is clear from tiw
detivacion of the integral: the effective coupling constant {in tha
sense of the renormalization group) becomes lacrge for large instan-
tons, and this makes the integrand blow wp. Thus the divergence :4
an embarrassment but not a catastrephe. It would be a catastrophe
if we obtained a divergent auswer in a regime in which we trusted
our appééximaticns. This is not the situation here; the divergence
arises in the regime of large effective ccupling constant, where
Phrased

another way, "the fact that the integrand has the wrong behavior for

all small-¢6ipling approximations are certainly wrong.

large o s overshadowed by the fact that it is the wrong integrand.
Thus we;gre=free to hope that strong- coupling effects (which we can
not at éﬁé ﬁément compute) introduce some sort of effective infra-

red cutqff 1n the integrand. This hepe mizht be wrong, but it is

ﬁt”by anything we have done so far,

1 33‘1f that this argument is blatant hand-waving. However,

ome new hand-waving special to Instanton calculations,
m“old hand-waving that accompanics any discussion of the

E“behavior of non~Abelian gauge field theories. For
J?there is evidence that the observed hadrons are made of
gake i
weakly-gauﬁiéd quarks., But if the quarks are weakly coupled, why

can't we knock them out of the hadron? Well, in a gauge field the-

ory the:éffective coupling constant grows at large distances, etc.,
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etc., much hand-waving, {nfrared slavery and quark confinement.

Everything that we have dane for SU(2) can be extended straight-

forvardly to SU(3). To yegin with, an SU(2) instanton solution can

trivially be made into an gu(3) instanton solution} all that needs

to be done is to say that three of the gpauge fields, those associ~

ated with an 3U(2) subgroup, are of the form piven, while the other

five vanish. It is pelieved that these exhaust the set of solu-

tions of Eq. (3.63) with unit winding number, although, unlike the

su(2) case, there is, to Oy knowledge, no rigorous proof of this

statement. Lf this is indeed the case, there are only two minor

differences between the sU(3) computation and the SU(2) ones
- (1) Instead of three parameters associated with comstant gauge

transformations, we have seven.

[One of the eight SU(3) generators
commutes with the Sy(2) subgroup and does not change the solution.)

Thus the factor of g % in Eq. -1z,

¥3)

(3.74) is replaced by one of g
B, has the proper value for an sU(3) gauge theotry, 11/8n%.

1v. THE ABELIAN HIGGS MODEL IN 1+1 DIMENSIONS®

In this section I will discuss a field theory in which instan-
ton effects drastically change the pbrticle spectrum, the Abelian
Higgs model in two-dimensional space-time.

In any number of dimensieons, this 1s the theory of a complex
scalar field with quartic self-interactions, minimally coupled to
an Abelian gaug® field with gauge coupling constant €, called the
electric charge.

In our notation, the theory is defined by the

Euclidean Lagranglan density,

L R A NI
L= oz (FF) ¥ DDLU+ W o+ ety . GO

where X is a positive number and uz may be either positive or nega~

tive. To this nust be added renormalization counterteTrmsy however,

renormalization will play no part in our comﬁutations, and, to keep
between bare

things as simple as possible, I will not distinguish

and renormalized parameters.

-4 8-

Perturbatibn,theory tells us that for weak coupling the quali-
cative properties of the theory depend critically on the sign of Bt
(1) 1f 1 is

ics of a charged scalar meson.

positive, the theory is simply the electrodynam-
The mass spectrum consists of the

charged meson, its antiparticle, and a massless vector meson, the
photon. -The force between widely separated external charges is the
ordinary Coulomb force. These statements require some modification
in two dimensions. Firstly, because there are no transverse direc-
tions, there is no photon. SecOndly, because the Coulomb force is

independent of distance, it is impossible to separate a meson and
an antimeson; in contemporary argot,
fined,

antimeson bound states,

the charged p;rticles are con-
The spectrum of the theory consists of a sequence of meson~
rather like the spectrum of positronium,

except that these states are all stable, since they can not decay

thiough the emission of (nonexistent) photons.

(2) 1If u2 is negative, the Higgs phenomenon takes place. In
the ground state of the theory,
|ep>|? = -pP/h 2 &7 .2

The particle spectTum consists of a massive neutral scalar meson
and a massive peutral vector Meson. The force between widely
separated'eiternal charges falls of f expanentially rapidly. These
stateméﬁts ?equire no modification in two dimensions.

In the remainder of this section, I will argue that the pre-
ceding séptence {s a lie; contrary to the predictions of perturba-
tion théofy. the qualitative properties of the model for negative
p? are the same as those for positive u?; the two-dimensional Abelian
Higgs médél does not display the Higgs phenomenomn. To be precise,
1 will ;%6w that, for negative 1%, the theory admits instantons,
and, wheﬁ the effects of these instantons are taken into account,
the iong-range force between extcrnal charges 1is independent of their
separétion} Also, 1 will be able to argue, from the behavior aof the
long~range force, that the thebry contalns {confined) charged par-—

ticles. There is a quantitative difference between positive and
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negative u’, though: Tor positive u?, the strength of the leng-range
force is independent of 41; for negative uz, the strength of the
long-range force is exponentially small in 1, the mark of an in-
stanton effect.

Just as in Sec. 3, we must begin the analysis by classifying
classical field configurations of Einite action. Of course, before
doing this, we must add a constant to the Lagrangian density so the
minimum of the action is zero., Thus we write

x“'gﬁ'{ (F,F) + |Du¢§2 +% (M’-a‘)z . (4.5)

This is the sum of three positive terms. In order that the third
term not make a divergent contribution to the action, it is neces-
sary that {wl approach a as T goes to fnfinity. However, there is

no restriction on the phase of ¢, In equations,

lim¢(r,0) = 2(8)a , {4.4)
T+

where g is a complex mumber of unit modulus, an element of U(}}.
In order that the second term not make a divergent contribution to

the action, it is necessary that

Au = g3 g" +'0(1/r2) .

(Remember, in our conventions, A {s an imaginary field.)

{4.5)

The first
term now automatically makes a finlte contribution to the action.
{4.5) is that it is identical to
(3.17); that is to say, the problem of classifying finite-

The lovely thing about Eq.

action configuratious is the baby problem of Sec, 3.2. Thus the
finite-action configurations are characterized by an integer, V,
the winding number, just as theéy are for four~dimensional gauge

field theories. By Eq. (3.28), the integral expression for the

winding number is

Vo= “"_ [d XE F . (llte)

TV IR TAY

ZTr%Adu’

v o=
where the intcgral is over the circle at infinity.

Equivalently,
(4.7)
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Although I won't bother to'explicitly display them here, it
turns out that the Euclidean field equations have solutions with
unit winding aumber, instantons, again just iike four-dimensional

gauge them'ies.’5 The only relevant difference, for our purpeses,

is that the Higgs model is not scale invariant; thus the instantons
have a fixed size and the problems associated with integrating over
scale transformations don't arise. Otherwise, though, everything
is much tie'shme as 1t was before, and we can copy step=by-step our
earlier analysis and uncover the vacuum structure of the theovy.
Thué, just as before, we have a family of ©-vacua, with energy

densities given by

E(BY/L = —2Ke"s°cose . (4.8)

Here L is the volume of (oue~dimensional) space, Sy 1s the action
of an instanton, and K 1s a determinantal factor.
the derivation of Eq. (3.59), we find that

Also, by copying

<dle |6> = Buke 50 ginb . (4.9)

(0 uv
As before, this has the right reality properties; when we continue
to Minkowski space, we pick up a factor of { that cancels the fac-

tor of i in our definition of A,. We see from this equation that
the 9-vacua are characterized by a comstant expectation value of
the electric field Fy .

stant '%ackground fleld" is not in conflict with Lorentz invariance ®

In two dimensiomns, unlike four, such a con-

Now that we understand the vacuum structure, let's compute the
force between widely separated external charges. To be more precise,
let usli 'roduce into the system two static charges of equal magni-
tude, - q. aﬁd opposite sign, separated by a distance L', and let us
compute, (for large L') A, the change in the energy of a B-vacuum
caused by these charges, The standard method of computing A uses
Wilson's loop integral,

i o W= exp[ %Audxu]

*

{4.10)

where the integration is over the rectangular path shown in Fig. 14,
According to Wilson, the vacuum energy shift is given by
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n<B|ule> (4.11)

1

In our case, e
<8jwfe> = [(dal{ay* ) [dyine e
I[dﬂlldw*}[dw] e s ei\)e

(4.12)

and ouvr task is to compute these two functional integrals in our
standard dilute-gas approximation, for large L' and T' (aud, of
course, for even larger L and T, the spatial and temporal extent of
the universe}. In Eq. (4.8) we have already calculated the denomi-
pator. To calculate the numerator, let us divide the sum over in-
stantens and anti-instantons into twe independent sums: one over
objects lying inside the loop and one over objects lying outside
the loup. By this division we neglect contributions coming from
configurations in which instantons and anti~instantons overlap the
loop, but, for large L, T, L', and T', this is a very small portion
of the available configuritions and can reasonably be neglected,

(0f course, if our calculation gives zero for its answer, then these
configurations will be the most important ones and we will have to
go back and compute them.) The functional integrand splits neatly

into the product of an "outside" term and an "inside" term:
§ « gOutside Sinside_ v = youtside vinside, while
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inside /e)

W= exp(2miqv . (4.13)

Thus, for the ocutside objects, ﬁe have the same sum as for the
denominator, except that the available volume of Euclidean two~
space 1s not LT but LT -L'T'. For the inside objects, we also have
the same.sum. except that the available volume is L'T*, and 0 is

" replaced by 8 +2ug/e.

ThUS. _s )
: 2n<B[W|8> = 2Ke "O[(LT -L'T')cos @
+ L'T'cos(f +2ng/e)
- LTcos 8] , {4.14)

where the first term comes from the outside sum, the second from

the inside sum, and the third from the denominator. Hence,
L= 2L'Ke-s°[cose-cos(B-iZﬂq/e)] . (4.15)

This is proportional to L', the separation between the external

chargess - thus there is a constant force between external charges

T at lérge'sephration. As announced, there is no quantitative dif-

ference between positive and negative .p®, However, there is a

qualitaéive“difference. For positive p?, the strength of the force
is proportional to q? for small #i; for negative u?, it is exponen=
tially small in-%.

was one, S, would have been S,/%.)

(Remember, if we had not chosen our units so 17

There is a simple physical interpretacion of this result. For
small 0 .and small q/e,

A= L'Ke S0[(B+qle)2-8%], (4.16)
E(8) = LKe—S"B2 + copstant , (4.17)

and, -3
<B|F,,|8> = 47Ke™""0 (4.18)

These expressions have an obviocus interpretation: In a B-
vacuum, there is a background electric field, and an energy density

proportional to the square of this field., Bgcause we are in one
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spatial dimension, the external charges act like coﬁdenser plates
in three dimensions; they induce a constant fleld proportional te
their charge in the region between them, which is added to the pre-

existing background field. Thus the energy shift is the separation

multiplied by the difference of the energy density of the new field
and that of the old., Equation (4.14) is just this trivial picture
complicated by non-linear terms in the expression for the enerpgy
density as a function of the field.

One aspect of these non-lineatr complications i of physical
This {s explic-
able 1if . the theory contains charged particles of charge e, If this

is the case, there is a process thal rcan change the charge on our

impori: En. (4.14) is periodic in ¢ with period e.

condenser plates by *eo: a particle-antipavticle palr can ﬁaterial-

lze in the region between the plates, and the particle can fly to
one plate and the antiparticle to the other. This process will
occur uwhenever it Is energetically favorable. For sufficiently
large L', this is equivalent to saying that it will occur whenever
it lowers the energy density, because the energetic cost of making
a palr is independent of L', and the energetic gain of lowering the
energy density is proportional to L'. Thus 4's that are equal
modulo ¢ lead to identical physics; ho matter which one you start
out with, pairs are made until the charge on the plates reaches its
optimum value, the one that gives minimum energy density.

What if we were to do a parallel computation in a four-
dimensional gauge field theory, with non-Abelian external charges?
Weuld we also obtafn a force independent of separation? Alas, we
would not. There is an L' in Eq. (4.15) because there is an L'T'
in Eq. {4.14), that is to say;'because even an instanton deep within
This is

At large dis-

tiie oop has a non-negligible effect on the locp integral.
precisely what does not happen in four dimensions.
tances from an instanton, AU is gaug'l, plus terms that fall off
far too rapidly to affect the loop integral. However, the loop in-

tegral is gauge~invariant, and we can always gauge-transform g such
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that it is constant everywhere except within a small cone emerging

from thé_lnstanton perpendicular to the plane of the loop. What-

‘ever confines quarks, it's not instantons.

V. 'T HOOFT'S SOLUTION OF THE U(1l) PROBLEM

5.1 _The Mystery of the Missing Meson

The:U(lj problem is an apparent contradiction between two
pleces bf accepted wisdom. One is wisdom of the '70fs, that hadronic
physics is quantum chromodynamics. The other is wisdom of the '60's,
that hadronic physics is approximately invariant under chiral
SU(2) & sy(2).

ogitions,

Let me remind you of the mcaning of these two prop-

Quantum chromodynamics is a field theory whose dynamical vari~
ables are an octet of SU{3) gauge fields and a family of SU(3) trip-
let Dirac bispinor flelds, called quarks.
Lagrangian density is

) 1
x---——-—-—(P
) . _;ﬁgz

In Minkowski space, the

Wy LTS u,
e )fjwf(i DY ~m ) . 5.1)

where £, Ed the flavor index, labels the various triplets. The
usuval exact %d ~approximate symmetries of hadron physies [charge,
isospln.»@ellrﬂznn '8 SU(3), etc.] act only on the flavor indices;
all phyg%&iAL?adroq; are supposed to be singlets under the gauge
group.hzégy;gilast statement is sometimes called quark confinement;
it is still far from proved, although there are some suggestive
arguments 1:¢l and ¥, form an {sodoublet, the non-strange quarks;

¥, 18 the #trange quark; ¢, is the charmed quark; there may or may
not be adﬂi;ional flavors.

Chitgl $U(2) & SU(2) is the group generated by the strangeness-
conservins weak-interaccion currents and their parity transforms.
its diagpnal subgroup is coaventional isospin. This group is very
it is
a much better symmetry than SU(3) and roughly as good a symmetry as

isospin.

close to being an exact symmetry of the strong interactions;

'Hoqever, Were this symmetry to be exact, only the isespin
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subgroup would be a manifest symmetry; the remainder of the group
would be a Nambu-Coldstone symmetry, with three massless Goldstone
bosons, the plons. The smallness of the pion mass {on a hadronic

This is
the picture that stands in back of all the stunningly successful

mass scale) is a measure of the goodness of the symmetry.

soft-plon computations of the mid '60's.
Now for the apparent contradiction: In quantum chromedynamics,
the limit of perfect SU(2) & SU(2) symmetry is the limit in which

the non-strange quarks are massless. In this limit, the Lagrangian

{4.1) obviously has a further chiral U(l) sywmetry; it is invariant
under
-iaY,

. (f=1,2) (5.2)

where G 15 a real number. The associated conserved current is

) _
. _
EMEED SR NS AR (5.3)

=1
I emphasize that the appearance of this additicnal chiral symmetry
is very special to quantum chromodynamics; for example, the U model
has no such additional symmetry in the chiral limit.
Now, e¢ither this additional symmetry is manifest or it is spon=-
taneously broken. If it were manifest, all non-massless hadrons

would occur in parity doublets. This is not the case; thus it must

be spontaneously broken, But if it is spontaneously broken,
Goldstone's theorem tells uys there must be an associated isoscalar
This is the U{l) problem: What

happered to the fourth Goldstone bogon?

pseudoscalar Goldstone boson,

One's firvst thought is that the missing meson is the eta, but
this is wrong. The chiral U{I) svmmetry is broken by the same mass
tern that breaks chiral SUkZ) 8 SU(2), and thus the fourth Goldstone
boson should have voughly the same mass as the pions. The eta is
far too heavy. This can be made more precise: Using conventional
soflt~pion methods, Weinbergm has shown that a U{l) Goldstone boson
must have a mass less than Jgum. The eta grossly disobeys this

inequality. Also, {f we consider the approximation in which the

_ Alas, life is not so simple.
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strange quark mass also vanishes, and in which we have perfect
chiral SU(3) @ SU(3) symmetry, the eta takes its place with the
pions in an octet of Coldstone bosons. But in this limit we still
have an additional U{l) symmetry and we still have a missing meson.

[This should be all that I need to say about the eta. However,
there 15 some confusion abroad on this point, and thus I emphasize
that there is no comnection between the eta and the U(l) problem,
The eta is a red herring; it is just another hadrou; it is no more
a relic of a U()) Goldstone boson than is the N**,]

It may seem that I have posed an inscluble problem; this is
because I have lied to you. In fact, jﬁ is not a conserved current;
it is afflicted with the famous Adler-Bell-Jackiw anomaly.® In the
limit of N massless quarks,

N Euvkc

Hes _ N
O R (F

UV'FAU) .

(5.4)

{Note the similarity between the right-hand side of this equation-
and the Pontryagin density. This will be important to us later.)

" You might think that this is the end of the story; if the cur~
rent 18 not conserved, there {s no U(1l) symmetry to worry about.
In Sec. 3, we showed that the Euclidean
counterpart of the right-hand side of Eq. (5.4) could be written as

the divergence of a {gauge-variant) function of Au and F It is

uv’
easy to see that the same construction works in Minkowski space.
Thus, if we define

N (Av’FAo_ %AA Ao)

5 o 5 L o 5.5
Ju ju 16n2 euvxa (5.5)

thie current is gauge-variant but cowserved.

1f we work in a covariant gauge (and why shouldn’'t we?), the
added term commutes with the guark fields at equal times. Thus we
can derive, for Green's functions made of one J; and a string of
gauge~invariant quark multilinears, chiral U(l) Ward identities of
the usual form, And since these are of the usual form, they lead

to the usual conclusion: Chiral U(1) is a symmetry; either Green's
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functions made of quark multilipears alone are U(l) symmetric, or
there are Goldstone poles in Green's functions for one JG and a
string of quark multilinears.

Is there no way out? WYell, there is one. The Hilbert space
of a gauge field theory quantitized in a covariant gauge is notori-
ously full of negative-norm timelike photons and similar gauge
phantoms, states that never couple to gauge-invarlant operators.
Wo, this
If the

Coldstone boson does not couple at all to gauge-invarlant operators,

Could it be that the Goldstone bosan is such a phantom?
is not possible; the formulation of the question is wromng.
it con't produce a pole in a CGreen's function for ome J3 and a
string of gauge~invariant operators.

The proper formulation of the guestion was found by Kogut and
Susskind, ® who had the bright idea of looking at the Schwinger
model, massless spinor electrodynamics, in 1 +1 dimensions in a co-
variant gauge. The Schwinger model is an exactly soluble theory
that has properties very close to those we have been discussing.
In particular, there is a gauge-invariant axial current with an
anomalous divergence and a gauge-variant conserved axial current,
and, most important, there 1is chiral symmetry breakdown without
Goldstone poles in gaupe~invariant Géeen's functions, What Kogut
and Susskind found in the covariant-gauge Schwinger model were two
and ¢_.

free massless fields, ¢+ ¢+ creates quanta of positive

norm and has the usual propagator; ¢_ creates quanta of negative
norm and has minus the uysual propagator. (Remember, a covariant
gauge is full of negative-norm states from the very beginning.)

All gauge~invariant quantities couple to the sum of these fields,
o, + 63

Thus pauge-invariant Green's functions are free of Coldstone poles,

this has zero propagator and produces no singularicies.

However, the pauge-variant conserved current couples to the gradient
of the diffecence, Su(¢+-¢_).

function for one gauge-variant current and a string of gauge~

Thus, when one considers a Green's
¥

invariant fields, the relative minus sign in the coupling cancels
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the reln;ive minus sign in the propagators, and Coldstone poles ap-
pear whéfé they should., This set-up is called a Goldstoue dipolc.
(The terminology is a bit misleadin§, because there are only single
poles in Green s Functions, but I'll stick with it anyway.)

Thus according to Kogut and Susskind, the proper formulation
of our qﬁeation is, 1s the U(l) symmetry of gquantum chromodynamics
spontaneously broken via a Coldstone dipole? You might think that
this i{s a-question that could be asked seriously only by a field
theorisf“griﬁen mad by spending too many years in too few dimensiens.
Nevertheiesﬂ, as 't Hooft’ brilliantly showed, the answer is yes.
The remaindef of this section {s an explanation of his

5.2 Preliminaries: Euclidean Fermi Fields

computation.

Before we can treat quantum chromodynamics by'functional inte~
gration, we must know how to integrate over Euclidean Fermi fields.
This'sectidn is a description of the theory of such integration,

I will
develop,;he theory by defining Fermi integration as a "natural"
. At the end, T will justify my
definitions by showing that they lead to formulas equivalent to

with a11 mathematical fine peints ruthlessly suppressed.?

generalizacion of Bose integration.

. those og;gingd by conventional canonical quantization.

For Bose

These are

Le;;ys_ﬁegin by defining our integration variables.
theorieg{iﬁg-integrate over c-number Euclidean fields.
objectséghanpommute with each other at arbitrary separations; they
can be_ghéugq;‘of as the classical (vanishing H1}) limit of quantum
Bose fields,
theog} gkéq;é_be classical Fermi fields, objects which anticommute

This suggests that the proper variables for a Fermi

with eagh;dtﬁet at arbitrary separations. Thus, for example, for

the the ry of a single Dirac field. we would expect our integration

_‘50 be two Euclidean bispinors, W and ¥, obeying

';@*“5{¢(x).$(y)} = {H(x), ¥} = ¥, =0, (5.6)

F el -
for all Euclidean points x and y.
LT -
Tﬁg-lgb: of these relations is cruclal, for it implies that ¢

WoT

can uot be in any gsense the adjoint of ¥ times some matrix. For if




I

-59-

this were 50, the last relation (multiplied by the inverse matrix)
would state that the sum of two positive semi-definite objects,
W¢+ and w+¢, was zero. This would only be possible if ¥ vanished,
not a happy situation for a prospective integration variable, Thus,
if we are to have any hope of founding a sensible integration the-
ory, we must treat ¢ and ¥ as totally independent variables.

This independence is the main novelty of Euclidean Fermi
We define
the Euclidean Y-matrices to be four Hermitian matrices obeying

fields; the rest of the construction is straightforward.

AL (5.7
We use these to define the 0(4) transformation law for ¢ in the
usual way, and define § to transform like the adjoint of Y. We

define Y., a Hermitian matrix, by

Yo " Y, Y, - (5.8)

Thus, W is a scalar, Est a pseudoscalar, EYU¢ a vector, etc.
The Euclidean action for a free Dirac field is

S = - Jd“k$(13uYu-im)¢ . (5.9)

The minus sign is pure coavention; we could always absorb it into
¢ Lf we wanted to. (Remember, we are free to transform ¢ without
touching U.) The { in froat of the mass term is not conventional.

It is thers to insure that the Euclidean propagator is proportional
to (p+im)/(p? +m®); if it were not for the 1, we would have tachyon
poles,

1f m vanishes, Eq. (5.9} is Iinvariant under chiral trans-

formations,
-ia¥s (5.10)

v > e-iast, w A

The quark part of the Euclidean action for quantum chromodynamics
is obtaincd from Eq. (5.9) by replacing ordipary derivatives by

covariant derivatives.

So much for the integrand; now for the integration. For Bose

fields, we defined functional integration as iterated integration

over ordizary numbers. Therefore, let us begin by defining

‘degenetates to a single equation, al
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integration for a function of a single anticommuting quantity, a.
(of course, for a single quantity, the anticommutation algebra
= 0.)

We want -to define

]daf(a) . (5.11)

for an arbitrary function, f. Ue want this to have the usual

linearity property: the integral of a linear combination of two
functions should be the linear combination of the integrals. 1In
addition, we would like the integral to be translation-invariant

Idaf{a+b) = Idaf(a) {5.12)

where b is ap arbitrary anticommuting quantity. T will now ghow
that these conditions determine the integral, up to a normalization
factor.

The reason is that there are only two linearly independent

functions of a, 1 and a; all higher powers vanish. Ve will choose'

(5.13)

our nnrmaiization such that
Idaa =1 .,

From this, and Eq. (5.12),

Ida 1=0. {5.14)

For functions of many anticommuting variables, we define mul-
tiple 1ntegrals as iterated single integrals. Thus, for example,
a couplete 1ntegration table for the four linearly independent func-

tions of two anticommuting variables, a and a, is

Idadi

As an application of this table, I will evaluate

o
b

. {5.15)

= o oo
o O O

Idad? elaa = Jdad_a'(l + Xaa)

{(5.16)
“ X,

We can now define integration over Fermi ficlds exactly as we
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defined Integration over Bose fields in Sec. I, He introduce two

arbitrary complete orthonormal sets of c-number functions, wr and

Er )

* + ] S0 7 =
fd xlbr!bs Jd xtpr !bs 5:3 . F5.17)
We expand the Fermi fields in terms of these functions,
vefa b Vela b, (5.18)
and define
(dy](dP] = Nda_da_ . (5.19)
r r r

As an apolication let me evaluate

f[dwl dile™ (5.20a)

where

and A is some linear operator, possibly depending on externmal c-
number ficlds., For simplicity, let me assume that A commutes with
A+. (This is the case for a quark in an external gauge field.)
Then we can choose the ¢r‘s to be the eigenfunctions of A,

CAY_=A (5.21)

and we can choose E; to be ':. Thusg
§ = -gxrzr a_, (5.22)

and

[tdwume‘s =T
T
= det A, (5.23)

Kote that this is the inverse of the answer we would have obtained

had we dene the identical integral with ¢ and ¥ complex Bose fields.

1 will now show that Ea, (5.22} is the correct answer, that it
is ideatical to the normal field-theoretic expression for the
vacuum-to-vacuum transitionamplitude in a theory of a quantized
Dirac ficld interacting with external c-number fields. 1In this
theory, this amplitude is the sum of all Feynman graphs with no ex-

ternal Fermi lines. This in turn is the exponential of the sum of

-Jd"xw-w , (5.20b) '
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all cqggjgggﬁ (that 1s to say, one-loop) graphs. WNow, if ¥ were a

This inverts the exponential of
the oneigoog graphs, that is to say, it turms the inverse deCer—
minantf}p;p}che determinant.

-Inﬁgnygtheory in which the Fermi fields enter the action at
wost biL}qgétly, we can always integrate over the Fermi fields,
using BEq. (5.23), before we integrate over the Bose fields. In
diagrammatic language, we can always sum the Fermi loops before we
integ:étg over virtual bosons. Thus, because our definition of
Fermi 1d£égqation gives the right answer for a Dirac field in an
externai:c—number fields, 1t also glves the right answer for a

; _ajintetacting wlth a quantum Bose field. In particular,
it givgg@ggf right answer for quantum chromodynamics.
haries. Chiral Ward Identities

i
8 section is a discussion of the chiral Ward identities
. SRR
for a he‘ y of a set of quantum Dirac fields interacting with c-

In the sequel, we shall use these identities

notﬁnéék%qagily irreducible, generated by a set of matrices, 7.
Let us a!ﬁéfime the constant C by

e 10 = - 620 (5.24)

Thus, féi;eiample, for a set of N fields each transforming according
to the n-dimensional representation of SU(n),

Ly

C=N/2. (5.25)

We wish to study the theory of these fields interacting with
given c-number gauge fields,



ITRENTRI

R AT

-63-

5« - ifd“x-lﬁ(Yu DU-H)IJJ , (5.26)

{s the covarlant derivative defined by Eq. (3.16}, and M

is the mass matrix for the Dirac fields, assumed to be SU{n)-invari-

(r)

s T=1,,.m, be a set of local multilinear functions
of the Dirac fields,

where D
W

ant. Let ¢

The Buclidean Green's functicns for these
objects are defined by

@,

o o Jlan@@1e %W e 6™ o)
.‘(1 e

(x )> = n

" [ap](df1e™>

where I have inserted the superscript A to remind you that we are

{m)

(5.27)

working in an external gauge field. _
Now let us perform an infinitesimal change of variables in the

numerator of Eq. (5.27),

§Y = -1Y, péa, 8P = -iyY, 8a, (5.28a)

where 8o is an infinitesimal function of Euclidean space. Since
the ¢'s are functions of the Dirac fields, they will change under

the change of variables; we define a¢‘r)/aa by

6¢(r) =

Thus, for example, 3W/da is -219y,b.

does not change the integral; thus, taking the variational deriva~

%) 3a)8a . (5.28b)

A change of variables

tive with respect to da, we find

Wy

3u<j;(y)¢ ..¢(m)(xm)>A

(1) (m}

+ <PMY By (x ). b <xm)>“

+ 6(4)(Y-x,)<9¢sl)(xl)laa...¢(m)(xm)>A

+ LA

+ 6(A)

(Y-xm)<¢(1)(x1)-..3¢(m)(xm)/3a>A‘ =0,

s - (5.29)
where ju is WYust.

These are, of course, just the Euclidean version of the Ward

identities we would have obtained in Minkowski space by studying
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the-divergence of js, and, of course, they are wrong, for they take
no account of the Adler~Be11—Jackiw anomaly. I don't have the time
here to recapitulate the theory of the anomaly, and I will simply

state the correct version of Eq. (5.29): The zero on the right-hand

side 1s replaced by

A renFn) P op.0@et L 6.0

We can obtain a very useful equation by integrating the cor-
rected Ward identity over y. The first term on the left vanishes
by integration by parts; the theory contains no nmassless particles
that could give a non-vanishing surface term. Also, on the right

we can use

Id"y(l-‘,i’-") = 3212y . (3.47)

Thus we obtain

z<[a"y$u'r, peD e 0@ et + 2D x>t

« - atovep P (x )0 (x5t (5.31)

Now all our artillery fs at the ready; we can begin our assault
on quantum chromodynamics.
5.4 QCD (Baby Version)

T w11l begin by analyzing a baby version of quantum chromody-
namics, in which the gauge group is SU(2), and in ghich there is
In Jquaticns,

[
F,F D .
P [ (F,F) - 1wu¥u@
After ﬁé have worked out the baby theory, we will go on to the real
thing.

only a single isodoublet quark, of mass zero.

(5.32)

Hosf of the analysis of Sec. 3 is essentially unaltered by the

presence of a quark. In particular, all of our old instanton solu-
tions are still solutions of the Euclidean equarions of motion
{with thé quark fields set equal to zero). Thus we still have all
the B-vacua, and formulas like

E{8)/V = - 2KcosBe 0 * {3.56)
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and

<6l (F,i)}e> = -p4u’ i ¥ e'So sin @, {3.59)

remain unaltered. The only effect of the quarks is to imsert into

the definition of X a term proportional to
i 13y +A )Y]:l!
det = det £
i i3 ’
[4 \: RRTRLY

is the field of an instanton.

(5. 33)

where Au
This is a trifling alteration, but it is a tremendous trifle,
for, as we shall see, iP has a vanishing .eigenvalue. Thus the
determinant vanishes, as does E(BY/V and <6|(F f)]9>‘
The vanishing elgenvalue can be demonstrated either by a short
I will choose
Despite what you might think, this is not a

explicit computation or by a long indirect argument.
the second method.

perverse choice. {Well, not totally perverse.) The indirect argu~

ment will have some byproducts that will be very useful to us later,
For simplicity, I will assume (falsely) that iP has a purely

discrete s;:oeu::trurn,!z

ib¢r =XV {5.34)

Because iPp is Hermitian, all the A's are real., Because Yy anti-

commutes with Y ,

g 1Y, ¥, % -A Y ¥, " (5.35)

Thus nonvanishing eigenvalues always occur in pairs of opposite

sign. Eigenfunctions of vanishing eigenvalue, on the other hand,

can always be chosen to be eigenfunctions of Yg »

Yoy ™ X Vy O, =0 (5.36)

2
Because v, = 1, X,
of these two types by n,.

1
I will now prove the remarkable sum rule,

n -on, =V. (5.37)

- +

Thus, not only is there a zero eigenvalue in the field of un in-
stanton, there is a zevo eigenvalue in @y pauge Tield oi nep=ere

winding number, whether or not it 1s a solution of the Euelidean

= +1, 1 will denote the number of cipenfunvtions,

equations of motion.
The proof rests on the chiral Ward 1dent1:£es for the quantum
theory of a massive quark interacting with an extermal gauge field.

= - 1fd" xYB-m)P . (5.38)
1f we tgke the case of no $'s, BEg. (5.31) becomes
-2iv = 2<[d*y ¥ mesllP
| i 2{[ap}(dple-S[d'y Ymy, ¥

e {1av)idgle” .39

(Remember. 1n the case at hand, C = ¥.) To evaluate the functional

integrals, we veed the elgenfunctions and eigenvalues of i(P-m).
The eigenfunctions are those of B, and the eigenvalues are simply

1(p-my, = - 1m)v_ {5.40)

If de expand the fields in the Y 's, the functional integrals

become :tivial, and we obtain

2] [a'y :*s"’rsﬁrc"s“‘“"

’ g(lr -im)

Poa2dy =

=2 fa'y vy v O - im7! (5.41)

Becauseggw'g?functions of a Hermitian operator with different eigen-

values%%g Fthogonal.

(5.42)
while (5.43)
““_"* (5.44)

e
It tutns out that the instanton obeys the sum rule by having

ba b
one eigenfunction of vanishing eigenvalue with X = -1 and none with

This also can be seen indirectly, without dirtying one’s
hanﬁs Hith ewplicit computations; see Appendix E.) We'll never
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need the cxplicit form of the eigenfunction, but, just for complete-

For an instanton with center at X

e,

ness, 1'11 write it down here.

and size o,

U (x-X,p) = plp? + (x-%)2]" (5.45)

where u is a constant spinor. Likewise, for an anti-instanton,
there is one cigenfunction of vanishing eigenvalue with X = +1, the:
parity transform of Eq. (5.45). For n widely separated instantons
and anti-instantons, there are n such eigenfuncrions, one centered
about each object. {(More properly, I should say that there are n
approximate eigenfunctions with approximately vanishing eigen-
values, but, for the dilute-gas approximation, the qualifications
are irrelecvant.) ’

What is important for our purposes is that the sum rule implies
that any field configuration with nonvanishing winding number has at
least ove eligenfunction of vanishing eigenvalue and thus a vanish-
ing Fermi determinant. Thus, pot just in the dilute gas approxima-
tion, but te qll orders in the semiclassical expansion, all the
vacua have the same energy and they all have a vanishing expectation
value for (F,E).

A phenomenon this general must have a deep cause, We can dis-
cover this cause if we consider the chiral Ward identities for
vanishing quark mass. There is a technical obstacle to this; for
vanishing quark mass, the denominator in Eq. (5.27) vanishes, at
least for fields with v £ 0, This is easily surmounted; we define

denominator~free Green's functions,

<V xp) . >5? = it oM .. (5.46)

By the same reasoning as before, these obey the Ward identities,

A

[ + 20v]<<h, (x> = 0, (5.47)

i.e., Eq. (5.31) without the mass term. The Green's functions of
our baby version of chromodynamics are given by
- A
f[dAle Sgeive<<¢{1)(xl)...>>
Sg eive

<86 (x,)...]0> =

<<1>>A ! {5.48)

[ldA)e”

—-H8-

where S8 is the gauge-field part of the action. By Eq. (5.47),

3, ,.
['a'a‘ +2 a—e__l‘e""(l)‘“x)'“l"’ -0,
(@“3ﬂﬂﬁwantitﬁn4§

Thus, the effect of a chiral U(l) transformation can be undone by
a change of 9,

(5.49)

That is to say, chiral U{l) transformations turn
one § vacuum into another; chiral U(1) symmetry is spontaneously
broken, and the 8 vacua are the many vacua that appear when a sym-~
metry suffers spontaneous breakdown. This is startling; after all,
when we first met the 8 vacua In Sec. 3, they had no connection
with chiral éymmetty ~=- there was no chiral symmetry for them to
be connected with! Nevertheless, it is an inevitable result of our
analysis, and ir explains why all the 9 vacua have the same energy
density and the same expectation value of (F,¥); it is because
these quantities are chiral U(l) invariants.

[Parenthetical remark: The factor of 2 in Eq. {(5.49) is worth
comment. It tells us that when we make a chiral rotation by T we

return to the same & vacuum. This is as it should be.

-imY .
M 0y . (5.50)

Thus a chi:élirotation by 7 has the same effect on the fields as a
spatial rotation by 2m; we would be very unhappy {f this symmetry
suffered spontaneous breakdown.]

Theré is one possible loophole in the argument I have given:
It remains a logical possibility that, for every Green's function,
the derivative with respect to & and the derivative with respect to
8 both vaﬁish.

symmetry breakdown, but manifest symmetry, and the O vacua would be

If this happened, we would have, not spontaneous

mathemat {cal artifacts, superflucus duplicates of a single vacuum,
I will now eliminate this possibility by computing, in the

dilute-gas approximation - ,

| Jlaa) (@91 (aT)e ™S eIV q, (x)

J1dal(ap] [dp)eS VO

: <elot(x)|e> - (5.5
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where o, = ALY . (5.52)
These are chiral eigenfields,
30,/%0 = F240, . (5.53)

Thus, if we obtain a non-zero answer, we will know that spontaneous
symmetry breakdown has occurred.

The computation will parallel closely that of the vacuum energy
of a pure gauge field theory in Sec. 3. Indeed, as the calculation
proceeds, we will accumulate all the terms that led to our earlier
expression for the determinantal factor, K, as an integral over
instanton size, P, Al

x-zg'*’j -g—%f (o ,
(] .

(5.54)

where M is the. renormalization mass. As these cld terms come up,
1’11 call thewm to your attention, but I won't bother to write them
down; 1'11 keep explicit track only of new terms that modify the
integrand in Eq. (5.54),

There is one important novelty in the dilute-gas approximation.
For n widely separated instautons and anti-instantons, iP has n
vanishing eigenvalues, Thus the in;egral over Fermi fields will
vanish unless the integrand contains

T a a . (5.55)
k£=0 r°r
Such a term can appear only if we are computing a Green's function
involving at least Zn Dirac fields. Hence, for any fixed Creen's
function, the potentially infinite sum over instantons and anti-
instantons terminates.

1 will first do the 0_ computation:

In the denominator of Eg. (3.51), the onlykconfiguration that
does not have a surplus of vanishing eigenvalues is ome of no in-
stantons and no anti-instantons, that is to say, the classical
vacuum, Ap = 0. Thus the denominater is simply the product of a

Bose determinant and a Ferml determinant. The same Bose determinant
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T det(i3), 15 a new factor,

merator, we need a configuration with v=1, by Eq.

nly one that does not have a surplus of vanishing
nvaly % s one instanton and no anti~instantons. Let us do the
_é;,ﬁtfl first; this gives

P Gx0) Qv 0, (=X,0) T A = YTy, (X, p)det (18)
e Af0 (5.56)

vhere det'; as always, denctes a determinant with vanishing eigen-
values iéﬁbved. The Bose integral gives a determinant and a bunch
of colléé%ive-cootdinate factors identical to those that go into K.
Becausé@ﬁdt&(iﬁ) does not depend on X, the integration over the
instdnté ‘location is trivial,

Jd“ijwocx-x) -1,

{(5.57)

10 ive

aud a fg Eﬁ}'of e from the e .

computation i{s almost identical to the og_ one; the only

that the relevant configuration is one anti-instanton,

and thﬁi nstead of a factor of eie, ve have one of e 19,

e EEERE]
. »Puttingiall this together, we find

d

; ."-'"'""" "" _31{2/32 719 -8 i{._)_ det '{(iP) .
r<e|qt(x)|0> e e 3 2[ ps EPM e

1

o ; (5.58)
(In case you've lost track of the meaning of my symbols, 1 remind
you thgs%,bq$s the Dirac operator in the field of an {nstanton of
size p.) " . -

"juﬂévaé before, we can use dimensional analysis to study the
1ntegrnn&tih:this formula. The eigenvalues of 1P have the dincn-
slons of'illéngth. One eigenvalue has been removed .from the primed
deterN1dénc;.thus the ratio det'/det has dimensions of length, and
anust be of the form

det '{iB)

et (1) (5.5%9)

= ph(cM) ,
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where h is an unknown function. Note that this gives the right
dimensions for the cxpectation values of o, 1l(length)3.

From here on the argument is a rerun ;f that of Sec. 3: We can
use the renormalization group to determine the form of the integrand
up to an arbitrary multiplicative constant, be embarrassed in the
infrared, wave out hands about new physics giving an effective In-

frared cutoff, etc.

We now know spontanecus symmetry breakdown occurs. Are there
Goldstone bosons? Let's look for them in
<8|o, (x)a_(0) 8> . (5.60)

By reasoning which should now be familiar to you, only twoe field
configurations are relevant: Au =0, and one instanton plus one
anti-instanton. The first of these just gives the usual one-loop
perturbaticn theory expression; this has a two-quark cut, but no
Coldstone pole., The second just gives the product <B|o+|8><6|0_|8>.
This also has no Goldstone pole. By similar wetheds one can in-
vestigate other gauge-invariant Green's functions, sﬁch as
<elj30:‘9> or <0|j3j3|8>, and again find no Goldstone poles, but
really there is no need to do these computations. If Goldstone
bosons appear anywhere, they should ‘appear in (5.60), and they don't.
In the last sentence, I should bave sald not "appear anywhere",
but "appear among the physical states", that Is to say, as singu-
larities in gauge-invariant Green's functions. The situation is

very different if we study a gauge-variant Green's function such as

<9[J;(x)0_(0)|8> - <e|j;(x)c_(0)|e> + Tc??z‘ <e|cu(x)0_(o)|e> ,

(5.61)
(3.41). As I have said, the first of

the terms on the right has no Goldstone pole, but, as I will show,
the second does.

where cu is defined in Eq.

The argument is simple: In a covarlant gauge,
there is a Goldstone pole if and only if

fd"x au <B|Gu(x)0_(0)|e> $0 . (5.62)
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If we use the identity,
Id"x'au ¢, = k71 SV (5.63)
and the fﬁtt that the only configurations that contribute to {5.62)
have v=1, we find

la"x au<e|cu(x)o_(0)[é$ = 32n%<plo_|6> 4 O . (5.64)

. On the other hand, for <B|JUJV|G>. the contributing configura-
tions have vanishing v, and thus there is no Goldstone pole.

.To summarize, we have found in the dilute-gas approximation:
spontaneous breakdown of chiral U(l) symmetry, no Goldstone poles
in gauge-invariant Green's functions, no Goldstone poles in the
propagatér of a gauge-variant conserved current, and a Goldstone
pole in the Green's function for one gauge-variant current and one
gauge-invariant operator. This is the Goldstone dipole of Kogut
and Susskind.

5,5 QCD (The Real Thing)

Real quantum chromodynamics in the chiral 5U(2) @ sU(2) limit

differs from our baby version in two respects. Firstly, we have
triplet quarks with gauge group SU(3) rather than doublet quarks
with gauge group SU(2). Secondly, we have two massless quarks,

rather than oée.
irrelevant to the U(l) problem.]

Replacing an SU(2) doublet by an SU(3) triplet makes hardly

{I will ignore the massive gquarks; they are

any change. If this were the only difference, we would still have

instantons, and the constant C of Eq. (5.25) would still be I; the

only thing we would need to change in Sec. 5.4 would be the integral

12

over instanton size, where g~° would become g~'%.

In contrast, replacing one massless triplet by twe makes a
profound change. C is doubled, and thus the sum rule (5.37) is

changed to

n = 2v (5.65)

ot
Hence, iP.in an instanton field has two vanishing eigenvalues rather

than one, {We don't really need a fancy sum rule to see this; we
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have two independent quark fields, so every elgenvalue occurs twice,

once for ¥, and once for y,.) Thus, two fields no longer suffice
to take care of all the vanishing eigenvalues, and all quark bi-
linears have zerc expectation values.

This is no obstacle to demonstrating the spontaneous breakdown
of chiral U(l) symmetry; we just have to study quadrilinans‘rathet
than bilinears, For example, the same computation that before gave
a non-vanishing expectation value for E&(I-Ys)w‘ will now give a
non-vanishing expectation valye for wl(l-Ys)wl¢2(1~Ys)¢z.

There is 2 reason for this. We have found spontaneous break=-.
down of chiral U(l), but not of chiral SU(2) @ SU(2}); the & vacua
are all invariant under chiral SU(2) @ SU(2). [There are twc ways
to see this: (1) There are too few 8 vacua for them to be anything
but invariant; for spontaneous breakdown of chiral SU(2) 8 SU(2)
(2) Chiral

U(1) transformatlons are connected to O by the anomalous divergence

we need at least a three-parameter family of vacua.

of the isesingletr axial current; the isotriplet axial current is
anomaly-free.] All Lorentz-invariant quark bilinears transform
according to the representation (%,}) of SU(2} @ SU(2), and must
have vanishing expectation values.
SU{2) 8 SU(2) singlets, such as

However, there are quadrilinear

iﬁijﬂkzwi(l‘a)wkwj(l‘n)wl = w!(l*g)wl¢2(1~n)¢z-¢‘(lfg)wzwz(lfn)wl.

These operators can have non-vanishing expectation values. (5.66)
The doubling of C also changes Eq. (5.49) to
3
[am + 4 ae]<8l¢ (x )...|6> =0 , (5.67)
Thus a chiral rotation by n/2, rather than T,
- . 5.
LZYC TR £ PO (5.68)

returns us to the same 6 vacuum,
broken SU(2) @ SU(2).

transformation,

Again, this is an effect of un-
If we wultiply this by the Su{(2) 8 SU(2)
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LARdRE D FL I S gl 4 A (5.69)
we obta.in wl - 'IJ‘ . q;z + _wz N {5.70)

which sﬁbuld-not be spontaneously broken.

of Eoﬁfsé. we don't want unbroken SU(2) 6 SU(2) in quantum
chromodjﬁhuiés; we want spontaneous breakdown; we want pions. How-
evér. thgre is no reason to be disturbed thar pions have not emerged
from our computations. Our methods are semiclassical, valid in the
limit of vanishingr, in principle capsble only of rvovealing those
phenomenon .that occur for arbitrarily weak coupling. We have
learnéd;tﬁat the breakdown of chiral SU(2) @ SU(2) is not such a
phenomenon.” This 1s no surprise. What is a surprise (and a wonder-
ful surég&gg! 1s that the breakdown of chiral U(1) is such a
phenomenoﬁ. .

5.6 Miscellany

There are some tOpics that I do not have the time to discuss

in the detail they deserve but which I can not resist mentioning:
_ (Ilglygg,most theories with spontaneous symmetry breakdown,

symme:ry ds restored at sufficiently high temperatures. Is this
true here? Ihia is an easy question to answer. Finlte-temperature

Green' Qaggnctions are given by functional integrals over a Euclidean
time 121§E%?}y proportional to the temperature, with periodic time
boundarj]cdnditions for Bose fields and antiperiodic ones for Ferml

fields.

size eventually get squeezed cut; there's no way to fit them {nto

Thus. as the temperature goes up, instantons of any glwven
the available region of Euclidean space. However, mo matter how

high the ‘temperature, there are always instantons so small that they
barely notice the time boundary conditions, Thus, although asuym-

metries’go to zero as a (calculable) power of the Inverse temperas

ture, Squetry 18 never fully restored. For extrervly high temper-
atutes.‘the Only relevant instantons are so small that the elffective
coupliug constant is extremely weak; thus we could make wnmerical

computations of extreme accuracy, but only in a regime that {s
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totally Iniccessible to experiment. I stress that this persistence
of symmetry breakdown is a reflection of the scale invariance of
classical chromodynamics, not of any property of Instanton effects
in general. For cxample, in the model of Sec. 4, there is a def-
inite instanton size, and thus, at sufficiently high temperatures,
all inscanton effects disappear.

~ (2) Callan, Dashen, and Gross! have recently proposed a de-
tailed picture of the dynamic structure of quantum chromodynamics.
To explain their ideas, let me restrict myself to chromodynamics
with two massless quarks, and let we imagine the universe cooling
down from a2 very high temperature. Then, according to Callan,
Dashen, and Gross:
(a)
coupling constant is very small, chiral U(l) is spontaneously
broken by instantons, but chiral SU(2) @ Su(2) is still a good

symmetry, and quarks are still unconfined.

At very high temperatures, when the effective

{0f course, this

part. is the standard picture which I have described in detail.)
{0l

coupling constant grows larger, and chiral SU(2) & SU(2) suf-

At somewhat lower temperatures, the effective

fers spontaneous breakdown,® This is also an instanton effect,
but an indirect one that can not be seen in the dilute gas aﬁ-
proximation., Nevertheless, the effective coupling constant,

although not tiny, 1s still small enough so that weak-coupling
approximations are fairly reliable. (This part looks good to
me.) Quarks are still unconfined.

{c)

fective couplings, new field configurations, called "merons",

As still lower temperatures, and still larger ef-

become important in the functional integral. These produce a

long-range force that.confines the quarks.*® (I can see nothing
wrong with this idea in principle, but the details of the

argument involve a stupendous amount of hand-waving. This part
is just a suggestion (although a very clever suggestion) that

may or may not someday become a theory of confinement.)

" in most of the § vacua we have observable strong CP violation,
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If you will excuse me for beating a_dead horse one more time,
this pic:ure_shows very sharply how misleading 1t i{s to say that
This implies
that qua:ks get their masses through spontaneous symmetry break-

"instan;ons give the U(1) Goldstone boson a mass”.

down, with the appearance of four Goldstone bosons, and then instan-
tons dome to the rescue. This 1s not what happens.

(To be fait, 1 should modify the last sentence and say, "This
is not wha: happens in the picture of Callan, Dashen, and Grass."

A skeptic_might imagine replacing paragraph (c) above by, "At still
lower temperatures. and still larger effective couplings, new fiald
configuta:ions become important which restore chiral U(l) invari-
ance, - At a yet later stage, this suffers spontaneous breakdown and
a Goldétbne boson appears."” To my knowledge, there is no chromo-
dynamic éoﬁﬁutation that offers the slightest evidence for this dis-
gusting alternative, but it is not logically excluded.”)

(3) I have stressed several times that spontaneous breakdown
of U(l) (ﬁithout Goldstone bosons) is independent of spontaneous
breakdown of SU(2) ® SU(2) (with Goldstone bosons).
paper, Crewther’shas argued ingeniocusly that these phenomena are
This would be bad

£
news 1f it were true, but I do not believe that it is; I think

In a recent
not Just independent; they are inconsistent,
Crewther's arguments are invalid. However, since Crewther and I

are at this moment entering our fourth month of correspondence on
this matter, and since neither of us has yet convinced the other of
the ervor 6f-his ways, I will say no more about this.

{&) _Iﬁ all the & vacua, except for 8 =0 or W, CP-noninvariant
cperatorﬁ have nouvanishing expectarion values. Thus it seems that
of
course, this is an illusion; the B vacua are trousformed into each
other by the U(1) group, and thus all experiments must yield the
same results in any vacuum. Phrased more explicitly, for every 9
vacuum there is a discrete symmetry under which the vacuum is in-

varian;, the product of CP and an appropriate U(l) transformation,
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and we are free to redefine CP to be this transformation.

All this is for massless quarks, The situation changes drastic-
ally when the quarks have masses, either because we have put them
in by hand, or because they have Yukawa couplings to weak-interaction
Higgs mesons. Now we no longer have U(1l) symmetry; there is a
potential clash between the definition of CP selected by 6 and that
selected by the quark mass operator, and there 1s the disastrous
possibility of strong CP violation.

[Let me dispose of a red herring. You might think that all
this might be said of a theory in which U(l) breaks down in the
ordinary way, with Goldstone bosons, as in the U(l) o model., 1In
this case, there is no problem; as soon as we add a U(1l) violating
interaction, no matter how weak, the order parameter, the analog of
B, automatically aligns itself with the perturbation, This {& not
what happens here. The easiest (and unfortunately alse the least
convincing) way of seeing this 1s to remember that when all the dust
of Sec. 3 settled, O emerged as effectively a coupling constant, the
coefficient of a term in the action. Thus we would ﬁo more expect
® to change discontinuously in response to an external perturbation
than we would expect g to.]

Several mechanisms have been suggested for avoiding this disas-

ter. ™

At the moment I favor an up quark with vanishing bare mass,
that is teo say, with vanishing coupling to the Higgs fields. In
this case, we still have a U(l)} symmetry, chiral U(1l) acting on the
up quark only, and thus we have no CP problem. Unfortunately, this
conflicts with current-algebra estimates of the up mass} these all
agree that it is somewhere between Y and ¥: of the down mass. How-
ever, all these estimates are based on soft-kaon and sofg-eta com-
putations, and these are notoriously less accurate than soft-pion
computations. For example, only soft-pion metheds are nceded to
compute the slope of n + 37, in good agreement with experiment;
soft-eta methods are needed to compute the rate, off by a factor of

three."® So perhaps a massless up quark is not such a silly idea.
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Stlllﬁﬁ}3gquld be happier if I had a more elegant solution, and one
with yfgﬁﬁgredictive power.

6.1 Unstable Vacua

THE FATE OF THE FALSE VACUuM“}

16&5;&.-2;4 1 explained how to use instanton methods to study
a particle theory with a false (that is to say, unstable) ground
state.<~If this section I will apply these methods to a field
theory-with a false ground state, that is to say, a false vacuum,
- Por: simplicity, I will restrict myself to the theory of a
single scalar field in four-dimensfonal space-time, with dynamics
defined-by the Euclidean action

I
i

S = [a"xma »+u)] ,

whete U is a function of the form shown in Fig. 15.

(6.1)

Note that U
possesseslsrq relative minima, ¢ and ¢_, but only ¢_ is an absoclute
minimuml }n analogy to Sec. 2. 6, I have used my freedom to add a
constani__,l}:y U to insure that U(¢+) = 0. The state of the classical
fiel_fi_;fhggg for which ¢ =¢_ is the unique classical state of lowest
energ{gfgqu‘at least for weak coupling, corresponds to the unique

vacuuﬁ  tite of the quantum theory.

The state of the classical

fleld tgeory for which ¢ = ¢, is also a stable classical equilibrium

Hawever. in the quantum theory it is rendered unstable by
barriet,penetration, it 1s a false vacuum.

A\ / ¢

Figure 15

Tlra
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Even without any knowledge of instantons and bounces, it is

€asy to understand the qualitative features of the decay of the

false vacuum. The decay closely parallels the nucleation processes

of stati{stical physics, like the crystallization of a supersaturated
solution or the boiling of a superheated fluid. Imagine Fig. 15
to be a plot of the free energy of a fluid as a function of denmsity.
The false vacuum corresponds to the superheated fluid phase and the
true vacuum to the vapor phase, Thermodynamic fluctuations are con~
tinually causing bubbles of vapor to materialize in the fluid. If
the bubble is too small, the gain in volume energy caused by the
maﬁerialization of the bubble is more than compensated for by the
loss in surface energy, and the bubble shrinks to nothing. However,
once in a while a bubble is formed large enough so that it is ener~
getically favorable for the bubble to grow. Once this occurs,
there is no need to worry about fluctuations anymore; the bubble
expands until it converts the available fluid to vapor {or coazlesces
with another bubble).

An identical picture describes the decay of the false vacuum,
Once in a
while a bubble of true vacuum will form large enough so that it is

with quantum fluctuations replacing thermodynamic ones.

energetically favorable for the bubble to grow. Once this happens,
the bubble sp;eads throughout the universe, a cancer of space, con~.
verting false vacuum to true.

Thus the thing to compute is not a decay probability per unit
time, T, but a decay probability per unit time per unit volume,
P/V, for the probability per unit time that in a given volume a
critical bubble will form is proportional to the volume (at least
if the volume is much bigger than the bubble).

0f course, such a computation would be bootless were it not for
cosmology. An infinitely old universe must be in a true vacuum, no
matter how slowly the false vacuum decays, However, the universe
is not infinitely old, and, at the time of the big bang, the uni-

verse might weil have been in the false vacuum, For example, in
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the Weinberg-Salam model, if the mass of the Hipgs meson exceeds
Weinberg's lower bound, the asymmetric vacuum, in which we live,
has a’ lower energy than the symmetriec vacuum. However, if the Higgs
mass 18 -lesg than V7 times the lower bound, the symmetric vacyum {3
a local minimum pf the potential, a possible false vacuum. Now we
know that at high temperatures (i.e., fn the early universe),
syhmetry breaking disappears in this model; the symmetric vacyum

is the true ground state., Thus it is possible to envision a situ-
ation in which the universe gets into the false vacuum early in its
history and is stuck there as {t cools off; in such a situation,
knowledge of I'/V is essential if we wish to describe the future

of the universe.

"[I stress that I'm just using the Welnberg-Salam model as an
example. I've chosen it because 1t's familiar and concrete, but in
some ways it's a bad choice for our purposes. Firstly, the model
involves, not one scalar field, but many scalar and vector fields.
Secondly, the vacuum stability features 1 have described are not
properties of the classicél potential, U($), but require considera-
tion of one-loop corrections. Thus the forwalism I am going to
develop 18 not applicable to this case. As long as we're talking
about this model, though, you might be tempted to consider the pos-
sibility that the Higgs mass is less than Weinberg's lower bound,
As Linde®'has pointed out,

this is silly; if this were the case, there would be no way for the

that we are living in the false vacuum.

universe to get into the false vacuum in the first place.]

The relevant parameter for cosmology is that cosmic time for
which the product of T/V and the volume of the past light cone is
of ordex unity. If this time is on the order of microscconds, the
universe i8 still hot when the false vacuum decays, even on the
scale of high~energy physics, and a zero-temperature computation of
I'/V 1s inapplicable.
decay of the false vacuum will lead to a sort of secondary big bang,
If this time is on the

1f this time is on the order of years, the

with interesting cosmolugical consequences,
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order of billions of years, we have occasion for anxiety.

6.2 The Rounce

We know from Sec. 2.4 how to compute [/V, We must find the

bounce, $, 2z salution of the Euclidean equations of motion,
3 39 =u(®), .
" u¢ UARC-] (6.2)

that goes from the false ground state at time minus infinity to the

false ground state at time plus infinity,

lin 3(x,x,) = 9, .
x"-r-_tm

(6.3)

To these boundary conditions we can add another. It i{s easy to see

that if the action of the bounce is to be finite,

113G§Y;.xq) = ¢+ .

|%

Once we have found the bounce, it 1s trivial to compute ['/V. To

(6 .ll)

leading order in-h,

T/V=Ke o . (6.5)

where S; is 5(0) and K is a determlnantal factor, defined as in Sec.

2.4,

I will shortly construct the bounce. Before I do so, though,
I want to make some comments:

{1) We already see the power of our method. The problem of
barrier penetration in a system with an infinite number of degrees
of freedom has been reduced to a study of the properties of a
single classical partial differential equation.

(2) The factor of V in the expréssion for T arises automatic~
ally in our method. WNo non-trivial solution of Eqs. (6.2)-(6.4) is
translation Invariant, Thﬁs we must integrate over the location of
the bounce. This gives us a factor of V, just as did the inctegra-
tion over instanton location in Sec. 3.

(3) It might be that there are many solutions to Eas. {6.2)-

(6.4). We are only interested in the solutions of minimum action,

for these make the dominant contribution to the functional imntegral.
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{(4) Ue are not interested in the trivial solution, ¢ = ¢+.
For this solution, 625/8¢? has na negative cigenvalues, and thus
makes no contribution to the vacuum decay probabilicy.

(5) - If we imbed $ in a one-parameter family of functions,

. 9, (x) = 3(x/)) ,

1

{6.6)

.

then,

5(3,) = n’jd“x(alﬁ)z + A"Id“xu(Ts) . (6.7

TP
Becauseif is a solution of the equations of motion, this must be
stationary at A = 1, Thus,

]d'!x(aua')z - —t.[d'*xu@ . (6.8)

Fatoay

and

Sy = ﬁfd"x(au'@')’ >0 . 3 (6.9)

This ialﬁea§5uring. Since U {s somewhere negative, one might worry
about tﬁé{ﬁbssibility that S, was negative, which would lead to a
very ati;ngefdependence of the decay probability onHi. This pos~
sibility hasinow been eliminated. Also,

il

{(6.10)

e d%s/d\? = -in"x(a‘ﬁ)’ <0,

Thus,'af 3::6’SIG¢’ has at least one negative elgenvalue, and<$ does
contribﬁ;e};& the decay probability. Of course, 1f there were more
than ong:ﬁég#tive eigenvalue, we would have to rethink the analysis
of Seczﬁf;aii However, ad I shall show eventually, this does not
happen; -thére is only one negative eigenvaiue.

Now:for the construction of the bounce: Egs. (6.2)-(6.4) are
Q{4) invsriant.
bounce might also be 0(4) invariant, that is to say, that § might

Thus it 15 not unreasonable to guess that the

depend only on the distance from some point in Euclidean space.
Recently; Glaser, Martin, and I were able to shoﬁ that this guess
1s right; under mild conditjons on U; there always exists an 0(4)-
invariant bounce and 1t always has strictly lower action than any

0{4)~noninvariant bounce.*® The rigor of our proof is matched only
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by {ts tedium; I wouldn't lecture on it o my worst enemy. However,
1t is possible to give a sloppy argument for the first part (exist~
ence) although,unfortunately, not for the second (action minimiza-
tion).

I will now give this argument.

If we choose the center of symmetry to be the origin of co-
ordinates, then 0(4) symmetry is the statement that $'is a function

Thus Eq. (6.2) becomes

QEE + 3 é§ - U'($) .

only of the radial variable, r.

dr? r dr (6.11)
while Egqs. (6.3) and (6.4) both become
%}g ¢(r) = ¢ _ . (6.12)
Also QE -
* e 0. {6.13)
r=0

Othervise, ¢ would be singular at the origin.

The key to the argument is the observation that if we interpret
? as a ocarticle position and r as time, Eq. (3.9) is the mechanical
equation for a particle moving in a potential mTnug U and subject to
a somewhat peculiar viscous danping force with Stoke's law coeffi-
cient inversely proportional to the time. The particle 1s released
at rest at time zero, Eq. (6.13); we wish to show that if the ini~
tial position is properly chosen, the particle will come to rest at
time infinity at ¢+. that is to say, on top of the right-hand hill

in Fig. 16.
‘ a-U

Figure 16

~ =

I shall demonstrate this b; showing that 1f the particle is re-
leased to the right of ¢_, and is sufficiently close to ¢_, it will
overshoot and pass ¢+ at some finite time. On the other hand, if it
is released sufficlently far to the right of ¢_, it will undershoot
and never reach ¢+. Thus {(arguing in the worst tradition of nine~
teenth century British mathematics) by continuity there must be an
intermediate initial position for which it just comes to rest at ¢+.

To demonstrate undershoot is trivial. If the particle is re-
leased to the right of ¢,, it does not have enough energy to climb

the hill to ¢+. The damping force does not affect this argument,

‘because viscous damping always diminishes the energy.

_ To demonstrate overshoot requires a little more work. TFor ¢
very close to ¢_, we may safely linearize Eq. (6.11),
A2 3 L -
Bt AR R R (6.14)
. where u’ is U“(¢_). The solution to Eq. (6.14) is
9 -6 =2(8(0) - ¢_JI (urd/ur . (6.15)

Thus, if we choose ¢ to be initially sufficiently close to ¢_, we
can arrange for it to stay arbitrarily close Eo $_ for arbitrarily
large ¥. But for sufficiently large r, the viscous dawmping force
can be neglected, since it is inversely proportional to r. But if
Q.E.D.

We have reduced the partial dif-

we neglect viscous damping, the particle overshoots.

Ye have made great progress.
ferential equation for the bounce to an ordinary differential equa-
tion. But we can go even farther; in the limit of swmall energy-den~-
sity difference between the true gnd false vacuum, we can obtain an
explicit expression for the bounce and for §,, as 1 shall now show.
6.3 The Thin-~Wall Approximation

Let U+(¢) be an even function of ¢,

. U+(¢) - U+(-¢) ’ (6.16)
with minima at some points :a,
U;(ia) =0 . (6.17)
Also, let us define
u? = Ul (ta) . (6.18)
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Now let us add to U+ a small term that breaks the-symmetry,

U= U+ +e{¢ - a)/2a , (6.19)

where € 15 a positive number., This defines a theory of the sort we

have been discussing. To lowest non-trivial order in €,

¢: = ta * (6.20)

and £ is the energy-density difference between the true and the
false vacuums,

It is easy to see the qualitative form of the bounce in the
limit of small € from the mechanical analogy of Sec. 6.2. In order
not to lose too much energy, we must chobse $(0), the initial
position of the particle, very close to $_. The particle then stays
close to ¢_ until some very large time, r = R. Near time R, the
particle moves quickly through the valley in Fig. 16, and slowly
comes to rest at ¢+ at time infinity. Translating from the mechan-
ical analogy back into field theory, the bounce looks like a large
four-dimensional spherical bubble of radius R, with a thin wall
separating the false vacuum without from the true vacuum within,

To go on, we need more information about the wall of the bubble.
For r near R, we can neglect the viscous damping term and we can

also neglect the g~dependent term in.U. We thus obtain

a%/de? = vl () . (6.21)

This is the classical equation of motion for a particle in a sym~-
metric double-welled potential, the equation we studied in Sec. 2.2,
the equation that had one-dimensional {nstantons for its solutions.
Indeed, a one-dimensional instanton centered at R is the solution
we need here, for such a function goes from -a to a as r increases
through R, just what we want. This is our approximate description
of the bounce.

The only thing missing from this deseription is the value of R.

This is casily obtained by a variational computation:
o

5 = 2112] rldr((d/dr)? + U) {6.22)

9
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We can divide this integral into three regions: the outside of the
bubble, the‘skin of the bubble, and the inside of the bubble.
Within zhz%accuracy of our approximation, in the outside region,

¢ = ¢ -and U = 0; thus we get no contribution from this part of
the inte ralf_ In the inside region, ¢ = ¢_ and U = -£; thus from

b3 Y
this pa%% of the 1n:egral we get

- §neR'e . (6.23)

Over thé skin. is approximately R, and, over this small region,
the e-dependent terms in U are negligible; thus from this part of
the integral we get

v n* B® [dr(3(do/ar)? + U ) = 20* RS, (6.24)
Uhereis;'ﬁs_the action of a one-dimensional instantom,
c 5, = rfz'ﬂ o . (6.25)
Puttingggi;;this together, we fi:;
S --&n’a“a+2w’n‘sl . {6.26)
Varjinéf;itﬁ respect to R, we ‘find
o dS/dR = 0 =-2n?R¥e + 68° R®S, . (6.27)
Hence, . . R =35,/¢ (6.28)

This completes the approximate description of the bounce. We also

know s :

s, = 27m%s}/2e? . (6.29)

I have 'described what we have done as an approximation that is
valid in the limit of small €.

computation, we can phrase the condition for the validity of the

Now that we have gone through the

approximation more precisely: the approximation is good if the

radius of the bubble is much larger than the thickness of the bubble

wall; R must be much larger than 1/p, or, equivalently,

351” >>e . {(6.30)
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6.4 The Fate of the False Vacuum

In a particle problem like that of Sec, 2,4, we can describe

The
particle sits at the bottom of the potential well until, at some

the decay process in the language of the old quantum theory.

random time, it makes a quantum jump to the other side of the bar-

At this
peint, the potential energy of the particle is the same as it was

rier, materializing at the point labeled ¢ in Fig. 7.

at the bottom of the well; thus its kinetic energy must vanish;
equivalently, it has zero velocity. These conditions give the
initial~value data for the subsequent motion of the particle, which
is totally governed by classical mechanics. Like all descriptions
of quantum-mechanical processes in the language of the old quantum
theory, this one must be taken with a large grain of salt; it will
certainly lead us astray 1f we try to use it to describe meaure-
ments made just outside the potential barrier, Nevertheless, it is
very useful as an asymptotic description, for discussing what hap-
pens far from the barrier and long after the time the system decays.
For example, this is the description we all use when-we discuss the
macroscopic detection of an alpha particle emitted by an unstable
nucleus.

This description can readily be éxtended to a system with many
degrees of freedom. The point O becomes the point in multi-dimen-
sicnal configuration space where all velocities vanish; that 1s to
say, it is the midpoint of the bounce. Thus, for the field theory
we have been studying, the description of the vacuum decay process
in the langusge of the 0ld quantum theory is: The classical field

TGReS a quantum jump (say at time zero) to the state defined by
0(%,=0,%) = $(x,x,=0) , (6.31a)
and

3,0(x=0,%) =0 , (6.31b)

Aftervards, it evolves according to the classical Minkowskian field
equation,

(V3323 = Uu'(e) . (6.32)
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The first of these equations implies that the same function,
(), that gives the shape of the bounce in four~dimensional Euclid-
ean space also gives the shape of the bubble at the moment of its
materialization in ordinary three-space. Indeed, it doas more;
because the Minkowskian field equation is simply the analytic con-
tinuation of the Euclidean field JQuation back to real time, the
desired solution of Egs. (6.31) and (6.32) is simply the analytic

continuation of the bounce:

90x,, %) = $(r = fixl=x2 ), (6.33)

[As a consequence of Eq. (6.13), ¢ is an even function of r, so we
need not worry about which branch of the square root to take.]

We Qah immediately draw some very interesting consequences of
Eq. (6.33):

(1) 0(4) invariance of the bounce becomes 0(3,1) invariance
of the solution of the classical f&eld equations. In other words,
the growth of the bubble, after its materialization, looks the same
to any Lorentz observer.

(2) In the case of small €, ﬁiscusaed in See¢. 6.3, there is a
thin wall,.localized at r =R, separating true vacuum from false.

As the bubble expands, this wall traces out the hyperboloid
|X|2 - 2 = &? . (6.34)
Typically; we would expect R to be a microphysical number, on the
order of a fermi, give or take ten orders of magnitude. This means
that by macrophysical standards, once the bubble materializes it
begins to expand almost instantly with almost the velocity of light.

(3) As a consequence of this rapid expansion, if a bubble were
expanding toward us at this moﬁent, we would have essentially no
warning of its approach until its arriwval.
ally in Fig, 17, The heavy curve is the bubble wall, Eq. (6.34).

This is shown graphic-

A statiomary observer, 0, cannot tell a bubble has formed until he
intercepts the future light cone, ¥, projected from the wall ac the

time of its formation, A time R later, that is to say, on the order
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AN

- o > |x]

Figure 17

of 10°°-10"% sec. later, he Is inside the bubble and dead. (In the
true vacuum, the constants of nature, the masses and couplings of
the elementary particles, are all different from what they were in
the false vacuum, and thus the observer is no longer capable of
functicning biologically, or even chemically.) Since even 10~ % sec.
is considerably less than the response time of a single neuron,
there is literally nothing to worry about; if a bubble is coming
toward us, we'll never know what hit us.

(4) The rapidly expanding bubble wall obviously carries a lot
A section of bubble wall at rest carries

of encrgy. How much?

energy S, per unlt area. Because any part of the bubble wall at any
time is obtained from any other part by a Lorentz transformation, a
section of wall expanding with velocity v carries energy S‘/JTTT;E

per unit area. Thus, at a time when the radius of the bubble is

i;i. the energy of the wall is

E.q1 - anix|* s, //T-vT .

wWa

(6.35)
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By Eq. (6.34) . =
' v = d|x|/de = V1-R*/|x]? . (6.36)

Thus, ES -»
Ba1y ™ 4m|x|*s /R = dmefx|?/3 . (6.37)

Thus, 1n the thin-wall approximation, all the energy released by
converting false vacuum to true goes to accelerate the bubble wall,
This refuteg the naive expectation that the decay of the false
vacuum uould leave behind it a roiling sea of mesons. In fact, the
expansion of(the bubble leaves behind only the true vacuum.

6.5 Determinants and Renormalization

¢ said earlier that the determinantal factor K in Eq. (6 5)

was defi d asg in the particle problem of Sec. 2.4, This is basic-

ally try gpt there are three technical differences: (1) In par~-
ticle ﬁgégics, we had only one infinitesimal tramslation, and

thus one_zero eigenvalue, to worry about; here we have four.

(2) 1t ya @y%ﬁftitical in the analysis of Sec, 2.5 that the second
variatio&gl gerivative of the action at the bounce had one and only

one negative eigenvalue. iIs the same true here? (3) Whenever we
study a relativistic f1eld theory, we must deal with ultraviolet

divergences and renormalization. OFf course, this last remark also

appliedﬂéo':ﬂe gauge fleld theories of Sec. 3, where 1 swept re-
nornalizltion problems under the rug. However, we now have a probh-
lem with a nuch simpler renormalization structure (only a single
scalar field to worry sbout, no problems with gauge invariance and
gauge-fixing terms, ete.), so it's worth confronting renormalization
head-on,

I wiii deal with these three problems in the order in which 1
have stated them.

(1) - Vanishing Eigenvalues. Because we have four infinitesimal

translations, we have four eigenfunctions with elpenvalue zverv,

prorortional to 9 ¢ We must determine the constant of prepertion-
alicy, that is to say, the normalizatfon of the elgenfunctivns,

This is easy to do. By the spherical symmetry of the bounce,
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=4 5,

1o 5o (6.38)

(6.u).

Thus, as far as zero elgeavalues go, rhe only difference be-

by Eq.

tween the problem at hand and che particle problem of Sec. 2.4 is

1
that we have four factors of (SO/ZW)1

rather than one, Hence,
s2 | det’(-3 5 +Un(@)] |7
R o= s H Y —- ’
4n det [—3“8u-+U"(¢+)] {6.39)

assuring wec have no problems with negative eigenvalues or renormal-
fzation.
(2)

ated at the bounce has at least one negative elgenvalue., Can there

Hegative Eigenvalues., We already know that 6°5/8¢? evalu-

be more ttan one? To answer this question I will have to steal

some information from the paper by Glaser, Martin, and I that I

2

veferred to earlier,*? There we showed that the bounce could be

characterized as the absolute minimum of § for fixed

Y = Jd“xu . {6.40)

This implies that there can not be two independent elgenvectors
with negative eigenvalues; for, if there were, we could form a
linear comlinaticn of the eigenvectors tangent to the surface of
constant V, and the bounce would not even be a local minimum of S
with fixed V,
(3)

expressed in terms of unrenormalized quantities.

let alone an absclute minimum.

Rengrmalization,

Until now all of our dynamics has been

We must now re-

cast our fcermulas in terms of renormalized quantities. We begin
with § itself, o '
n .
s=s+[s”. (6.41)
B as

Here SR is the renormalized action, a functlonal of exactly the

same form as §, but with all unrencormalized quantities replaced by

(n)

their rencrmalized counterparts, and S is the action induced by

standard rconormalization counterterms computed from the sum of all

G2~
n-loop graphs. To aveld excessive clutter i{n my equations, I will
redefine ¢ to be the renormalized field, U to be the polvnomial
that occurs in SR’ 3 to be the bounce as computed from SR, and S,
to be SR(¢).

The renormalization counterterms serve to remove all ultra-
viclet divergences from all one-particle irreducible Green's func~
tions., Equivalently, they serve to remove all ultraviolet diver-
gences{from the effective action, Y(9), the generating functional

of thede Green's functions. To one-loop order,”

expY(®) = expls (9 +s¢1 (8]

x de:[-auau+u"(¢)1" i (6.42)

It will be important to us shortly that (for renormalizable U's)
the righﬁ-hahd side of this equation is free of ultraviolet diver-
gences for arbitrary ¢.

Now let us imagine computing [/V {teratively, first treating
SR as if it were the total action, and then taking account of the

renormalization counterterms perturbatively. If we had not set -t

¢ (n)

equal to one, would have been proportional to . Thus, to

the order in which we are working, the only counterterm we need
consider is S(l).

The first thing we must vealize {s that the counterterms may
destroy our convention that S(¢+) variishes. We can take care of
this trivially by replacing S, in Eq. (6.5) by the difference
So = S(¢+)J. .

Secopdlyt adding new terms to SR will change the stationary
points of §, In particular, it will change the bounce. Let us

write T+0+ 80 . (6.43)
Then o 88, _ () ~
5{¢) » 5, + Id“x 7§§-A¢ + 5 () + ..., {6.44)

where the triple dots indicate terms that are negligible in the

order In which we are working. The second term vanishes because
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the bounce is a stationary point of SR' Thus, for our purposes,
(1

S() =8, +5° () . (6.45)

By the same reasoning,

so,) = s M, (6.46)
Putting all this together, we find
S e
rrv = gy expl=s, -0 @ +s g 01
det'{-BE3u+U"($)] -3
det (9,3, 70", (6.47)

The point of this exercise is not the siwmplicity of this formula.
Equation (6.47) is an ugly mess, and 1 know no way of evaluating

it for even the simplest theories without using a computer. Rather,
the point {s that ordinary renormalization works for instanton
computations: As a good renormalized expression should be, Eq.
(6.47) is free of ultraviolet divergences; each determinant is

(1), just as in Eq. {6.42)., (That

one of the factors is a primed determinant is irrelevant} omitting

paired with an exponential of §

any finite number of eigenvalues has no effect on the ultraviclet
divergence.)

6.6 Unanswered Questions

This concludes what I know about the fate of the false vacuum,
There remain many interesting unanswered questions:

(1) 1 have discussed the expansion of a bubble of true vacuum
into false vacuum. What L{f the initial state of the world is not
the false vacuum, but some state of nonzero particle density builr
on the false vacuum? Vhat happens when a bubble wall encounters a
particle?

(2) I have discussed spontaneous decay of the false vacuum.
However, there is also the possibility of induced decay. In partie-
ular, in a collision of two particles of very high energy, there
might be a won-negligible cross section for the production of a

bubble. How can onc estimate this cross section?
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(3) If we assume that the universe starts out in a false

vacuum, at some time in its expansion bubbles begin to form, Be-

" cause the formation of bubbles is totally Lorentz invariant, the

average distance_between bubbles at their time of formation must

be of theigo order of magnitude as the time at which bubbles

e

begin toi%sgggr._ Because bubble walls expand with the speed of

light, afte ,time interval of the same order of magnitude, bubble

walls begi, ‘to collide. What happens then? Can such events be
acc0mmodated in the history of the early universe?

The~g;oogding paragraphs are taken verbatim from a paper I
wrote at the end of 1976. 1 still don't know the answers to any
of these questions; maybe you'll be able to do better than I.

Appendix A

CiapEges. ow

HOW TO COMPUTE DETERMINANTS™
We wish to study the equation
(=30 +Wy = W, (a.1)

where W 1is some bounded function of r. Let us define wx(c) as the
solution of this equation obeying the boundary conditions

wl(-TIZ) =0, 3t¢A(-T/2) =1, (A.2)

The operator -3:-&“ {acting on the space'of functions vanishing at
$T/2) has an eigenvalue, An, if and only if

Wy (T/2) =0 . (A.3)
n
As in the text, we define
- 2 =
det( at440 nkn . (A.4)
(2) (12)

Now, let ¥'*? and W
be the associated solutions of Eq. (A.l}.
v§1) (1/2)

-3} +wliy
de: ._aé.‘.w(z)_‘\ = w{Z)(le) : - (A-S)

be two functions of t, and let U

I will prove that
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Proaf: e left-hand side of this formula is a meromorphic function

NeY J\(2)_
n

of A, witin a simple zero at each A and a simple pole at each
By elementary Fredholm theory, it goes to one as A goes to iafinity
in any dircction except along the positive real axis. The right-
hand side is a meropurphic fucetion with exactly the same zeroes

and poles. By elementary differential-squation theory, it also goes

te one i the same limit. Thus the ratio of the two sides is an ana-
Iytic funicion of A that goes ro cne as & goes to infinity in any
direction

except along the positive veal axis, That is te¢ say, it

i sne. Q.E,D.

If <. define a quantity N by

det(—ai 1)

e b o maey?
REIER TN,

(a.6)

then, by Zn, (A.5), N is independent of W. 1 will use this expres-
sion to define the normalization constant N in the functional in-

tegral. {Note that no explicit definition of this quantity was
given in the text, go I am perfectly free to define it as I wish
here.} Tius we have the desired formula for evaluating Gaussian

functional integrals,
2 o1 [ -5 '
N[det(*at +WYY = [nAry, (B/2)) ¢ (A.7)
As a specific example, for the harmonic oscillator, W = mz,
Y, = o !sinhw(t+7/2) , (A.8)

from which Eq. (2.16) ismediately follows.

Appendix B
THE DOUBLE VELL DONE DOUBLY WELL"®

In this appendix I shall show that the formulas derived in the
text for the splitting of the ground-state energies in a double-well
potential, Eas. (2.31) and (2.41), are equivalent to the results of

ordinary wave mechanics. To do this, 1 will have to both evaluate
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the determinants that appear in Eq. {2.41) (using the method of Ap-
pendix A) and do the wave-mechanical computation, To keep my.equa-
tions as simple as possible, I will choose my units such that w=1,

Evaluating Determinants

We have to evaluate a primed determinant, one with the zeco
eigenvalue omicted. I will do this by evaluvating the full deter-
minant on a finite interval, [-T/2, T/2], dividing this by its
snallest eigenvalue, A,, and then letting T go to infinity.

Thus we must construct solutions of

(-92 +u"(§)}¢A =AY . (8.1)

We already know one solution with A=90,
%

x, = §,°dx/dt

-+ Ae'ltl t -+ o

The constant A is determined by the integral expression for the in-
stantom, ‘Eq., (2.21),
' * - -3 = - |
= | dx{2V) * = (s, A" {a-%}] + 0(a~x) . {B.3)

Equation (B.l) must have a second solution with A =0, which I
denote by y,. It will be convenient to normalize y, such thac its
Wronskian with x, is given by

x, Bt Y, " Y, atxl = 242 . (B.4)
'I'hus, ltl
y, * *Ae y L itw (B.3)
. We can now construct ¢° of Appendix A. For large T,
Yolt) = (ZA)‘l(eTIle-Pe-leyl) . {B.6)
Hence,
v, (1/2) = 1, (8.7)

This takes care of the determinant. To find the lowest eigen-
value, we must find ¢l(t) for small A, This can be done by a

standard method: we turn Eq. (B.l) into an integral equation and
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iterate once, This can readily be seen to yield
t
Wy (e) = wo(t)d(?A’)"j de'{y, (thx, (t Jmx )y, (D (),

-T/2 (B.8)
plus terms of order A%, which we neglect, By Eq. (B.&),
T/2 -1
v, (1/2) = 1-A(4A2)-‘J defe x2-a yil . (B.9)

-T/2
For large T, the second term in this expressjion is bounded, and

thus negligible compared to the first term. Thus, for large T,

b, (T/2) = 1-A(4a%9) TeT (B.10)
because x, is properly normalized.
Thus the lowest eigenvalue is given by
3, = (4at)eT (8.11)
and, for large T, _
det'[—aé-ku"(x)] v, (T/2) 1
det [-ai-szl ) A, el/2 i ZAZ_. (B.12)

Reassuringly, this is non-zero and T-independent,
Plugging this in to Eqs. (2.31) and (2.41), we find that the

lowest energy levels are given by

ats,/mte St

E, /2 ¢ (.13)
Solving the Schrodinger Equation
He wish to study the solutions of
-iﬁza;w+-v¢= Ey . (B.14)

As long as x {s not near the bottoms of the wells, we can use stan-

dard VKB solutions. Near the bottom of each well, though; there
are two turning points.
§0 we can not use the standard connection formulas for a linear
turning point. TFortunately, near the bottom af a well, in a region

that includes both turning points, we may safely approximate V by a

These are not separated by many wavelengths,
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harmonic-~oscillator potential,

Thus, for example, for x near a,
we may write

- 42 a;w + d(x-aYyp =Ey . (B.15)

Our strategy will be to match WKB solutions of Eq. (B.14) outside

the wells to solutions of Eq, (B.15) in the bottoms of the wells.

Furthermore, since we know the solutions are either even or odd,

we can restrict ourselves to positive x, and only have to do this
swkward matching for the right-hand well.

I will begin by constructing the even and odd WKB solutions
for 0 sx<a, If we define

k() = [2(v-E) ], (B.16)

then these are x

¥ 4
.'{-' w =k &[exp‘h' Ikdx' * exp --h”lj kdx'}
.._‘ o G
For th *gﬁlutions we are interested in, E is itself of order'h.
Thus we may ignore E in the factor of k

order 1n'the exponential,

{B.17)

k. and expand to first

k = (zv);_‘ - F.(zx.r)"i . (8.18)

Y RL
To maich on to the sclutions of Eq. (B.,15), we need the form
of :he HKB solutions as X enters the regime of validity of the
quadra:ic approximation to V, V=(a-x)?*/2, In this regime k(x) is
Just (a—x), while we can compute the E-independent term in the in-

tegral by X
I dx(2v)" J dx(2) - I dx(2v)
o

[+ a
=18, - $a-x)? . (B.19)

For the E—deéendent term in the integral, we can use Eq. (B.3).

Thus we obtain

.4&' - (a-x)"’{exp-h" l¥s, - ¥ a-x)2 +E tn s"" “a-x) ]

t exp—h '} Sy~ Y(a-x)¥+E2n Su-!s A" (a-x) l}
, (B8.20)
If we write

E=ti(d+2) , (B.21)
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then Eq. (B.20) becomes
v, = {eso““ $7% A7 expl-(a-x)? /2]
1+ (a-x)"! e'so/?’“ si‘ A exp| (a-x)zlﬂi]}
x [140(e)] . (B.22)

We will hold this expression in reserve while we go on to study the
solutions of Eq. (B.15).
We already know one solution of Eq. (B.135), for € = 0,

b, = expl-(a~x)?/24] . (8.23)

Of course, there is another (edd, . This

increasing) solution, ¢,
does not have a simple form in terms of elementary functions, but
its asymptotic form, for |x-a| >>4i, is easily computed by the WKB

approximation, or just read off from Eq. (B.22),

¢, = (a-x)"lexpl(a-x)?/20] . (B.24)

It will turn cut that this is all that we need. Note that I have

normalized ¢1 such that the Wronskian of the two solutions is
¢, 0, Wy -, B0, = 2HE (B.25}

We wish to solve Eq, (B.15) for small €,
as led to Eq. (B.8),
o

By the same arguments

=9, -E[ dxﬁb‘(x')wl(x'wl(x) -6, (x",(0] . (B.26)
x

1 have chosen here the solution that vanishes as x goes to plus in-
finity. Thus, this is the appropriate solution for matching with
the decreasing WKB solution in the region (x-a) >>#. Thus, the
only matching left to do is im the region (a-x) >>11.

In this region, we c¢an use
-~

f dx lp';’ N (B.27)
to write =
Y o= exp[-(a-x)zl2h][1+0(€)]-C(ﬁh)%(a‘x)-lexpi(a-x)2/2ﬁ] . (B.28)
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As it should be, this is proportional to Eq. (B.22}, if we choose

o~So/t i

€= A(S, /W0 (8.29)

his is the desired result, and it 1is jdentical to the vesult of
the dilufe-gas approximation, Eq. (B.13),

Almost identical methods to these can be used to check the
dilute-gas formula for the width of an unstable state, Eq. {2.50}.
You might find it an instructive exercise to see that things wotk
out in this case also,

Appendix C
FINITE ACTION IS ZERO MEASURE"

- In this appendix I will show that, even for a one-dimensional
harmonic oscillator, motions of finite actiom form a set of measure
zefo in function space,

1f we define eigenvalues An and expansion coefficlents c, as
in Sec. 2.1, then, for a harmonic oscillator, the quadratic approxd-
mation to the action is exact,

- 2
s J"P“ e . (c.1)
If we introduce new variables, bn = anXnIF, then
{C.2)

s =4i/2 Jb2 .
Lo,

Let us define a slightly uncomventional normalization constant, N',

by N'[dx] = 0(2m fdo_ . .3
n n
This has been chosen such that
N'J{dxle's"“' -1 (C.4)

' How much of this integral comes from motions of finite action?
The integrand is positive, and every motion of finite actien lies

in a cube of side L

lbnls L for all n, (¢.5)

for sufficiently large L. Thus, the finite-action contribution to
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the integral must be less than
w !5 bz
1im i (2“) {db e =0, (C.6)
-m n-
-L
Q.E.D.
Appendix D

ONLY WINDING NUMBER SURVIVES

This appendix 1s the promised (in Sec., 3.3) demonstration that,
for a sufficiently large box, the only relic of the boundary condi-
tions Imposed on the walls of the box is the winding number,

Consider a rectangular box in Euclidean four-space, with sides
L:"‘Lu' I will label the eight hyperplanes that bound the box by
their normal vectors; thus I will refer to the upper l-wall, the
lower l-wall, the upper 2-wall, etc. {Upper and lower here refer
to greater and lesser values of the appropriate coordinate.)}

On the walls of the box the tangential components of AU are
given in a way consistent with finiteness of the action, that is to
say, consistent with

L " gBu gt . (D.1)

Thus, giving the tangential components of Au on the walls is equiv-
alent to giving g on the walls (up to an irrelevant multiplicative
constant)., The gauge condition A, =0 still allows arbitrary x,~
independent gauge transformations, I will use the freedom to make
such a transformation to transform g to one on the lower 3-wall.

Because the vanishing of A, implies the vanishing of 3,8, g is

On this

wall, g is given as a function of three variables, g{x,, X,, x“),

automatically one on all walls except the upper 3-wall.
equal to one on the boundary of the wall. (I stress that the only
function of this gauge transformation Iis to simplify my subsequent
arguments. Since the functional integral is gauge-invariant, any-
thing I can prove with this pauge convention I could prove without
it; 1it's just that the arguments would be clumsier.}

Now let us imbed our original box, with boundary conditions
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given by gl(xl. %y xh) in a larger box, with the same lowermost
corfer (chosen to be the origin of coordinates), and with the same

sides L;, L,, and L,, but with third side L; +A., Let the boundary

conditions on the larger box be given by somelfunction B, (%0 x50 X, )

_ Theorem: 1If g, and g, are in the same homotopy class, then

any.figld configuration defined inside the original box consistent

with its boundary conditifons can be extended to a field configura-

‘tion défined inside the larger box, consistent with its boundary

conditions .and the gauge condition A, =0, at the cost of an increase
in act{on of order 1/4.

Before I prove this theorem I will make some comments:

(1) The theorem would certainly not be true if g, and g, were
in different homotopy classes. In this case, to get from g, to g,,
ve would have to put at least ome instanton in the new volume; this
vould inerease the action by at least 8n?/g?, independent of the
value of A.

(2) _We-are free to choose & to be proportional to, say, LE.
Thus,. {gg_a very large box, the fractional change in the volume of
In the

language‘of statistical physics, changing the boundary conditions

the box 1s negligible, as is the change in the action.

while keeping the winding number fixed is just a surface effect, not
a volume-effect.

{3) There is an appareﬁt paradox that may have bothered you:
For aﬁy fixed configuration of instantons and anti-instantons,
g(xl,rxz, xﬂ) is fixed. How then can we get all econfigurations
consigtent: with a fixed winding number with a single set of bound-
ary conditions? The theorem supplies the answer: We don't get all
these configurations; we get only a small portion of them. However,
we do get “close relatives"” of all of them, configurations that dif-
fer only by a small distortion very close to the upper 3-wall. The
difference caused by this small distortion s negligible for a suf-
ficiently large box.

Now for the proof: By assumption, g and g' are in the same
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homotopy class. Thus there is a continuous function of four vari-

ables, g(x,, x;, 8, %,), with 0 <a s1, such that

g(x v %, 0, %) ~g glx x5 1,x) ~g, . (D.2)
Let g{x) be a function defined in the added volume by
glxy = glx,, x,,(x,-L,}/4 x) . {D.3)
If we could choose '
A, =838, (D.4)

then we could effect the desired transition at no cost in added

actlon. Ynfortunately, this is impossible; Eq. (D.4) is inconsist-

ent with the gauge condition A,=0. However,
A,sdeT 0 WA,
=0, u=3, (0.5)

is consistent with the gauge condition and will effect. the transi-

tion.
We must compute the action assoclated with Eq. (D.3). If we
make a gauge transformatiom by g~', Eq. (D.5) becomes
AD-O' uE3,
= g7} 3ug . u=3. (D.6)

(A gauge transforﬁation does not change the actien.) From Eq.
(D.6), we sce that A, is proportional to 1/4. The only non-vanish-
ing components of Fuv are Fu:' also proportional to 1/4. Thus the
Lagrangian density is proportional to 1/4?. However, the volume of

integration is only proportiomal to 4. Q.E.D.
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Appendix E .
NO WRONG-CHIRALITY SOLUTIONSY
In this appendix I will show that, if
Fuv = Fuv N {E.1)
then the only normalizable solution of both
DuTu'P'O, (E.2)
and
YoV =¥, (E.3)
is ¢ =0,
From Eq. (E.2),
vavbuvu'b =D DY +FELY Y, =0 (E.4)
Also,
puquYvYS = -FuquYv . {E.5)
Thus,
Dunuw-o . (E.6)
Multiplying by w+ and integrating, we find
5 +
= . .1
Id xl)ulb nunp 0 (E.7)
Hence
DUI]J =0, {E.8)
for all y. If we go to axial gauge, this implies, in particular,

that Y is independent of x,. The only such normalizable function
is Y=0. Q.E.D. '

NOTES

1. These-;opics are all drawn from the classic part of the theory.
"Clagsic",in this context, means work done more than six months
agé._ A good summary of the more recent rescarch of one of the
most active groups in this field is C. Callan, R. Dashen, and
D. Gross, "Toward a Theory of the Strong Interactions” (to be
published in Phys. Rev.).
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Polyakov's early work is summarized in A, M., Polyakov, Nucl,
Phys. B 121, 429 (1977) .

See, for example, R. Feynman and A. Hibbs, Quantum Mechanics
and Path Integrals (McGraw-Hill, New York, 1963).

See the note on notation at the end of Sec, 1,

.It was Polyakov (Ref. 2} who recognized the double well as the

prototypical instanton problem.

For a review of lumps, see my 1975 Erice lectures, 'Classical
Lumps and Their Quantum Descendants", in New Phenomena in Sub-
nuelear Phusicg, ed. by A. Zichichi f?lenum Press, New York,
1977).

This is, of course, nothing but the standard prescription for
handling collective c¢oordinates in scliton problems. See’

J. L. Gervais and B. Sakita, Phys. Rev. D11, 2943 (1975).

The treatment here follows that of C, Callan and S. Coleman,
Phys. Rev. D16, 1762 (1977),

states this way goes back to Langer's analysis of the droplet

The idea of handling unstable

model in statistical mechanics [J. S. Langer, Amn. Phys.(N.Y.)
The factor of %, of which much is made below,
occurs in Langer's analysis and was explained to me by Michael
Peskin. '

The order of my exposition will not be the historical order of
discovery. Here is the way it happened: The topological struc-
tyre of finite-action Euclidean gauge-field configurations was
uncovered and the instanton solutions discovered by A. A.
Belavin, A. M, Polvakov, A, S, Schwartz, and Yu. 5. Tyupkin,
Phys. Lett, 59B, 85 (1975). The importance of the instantons
't Hooft [Phys, Rev, Lett. 37, 8 (1976};
Phys. Rev. D14, 3432 (1976} ] who used them to solve the U(1)

(1 won't get to this until Sec. 5.)

was realized by G.

't Hooft's work

was clarified and extended by R. Jackiw and ¢. Rebbi [Phys, Rev,
Lett, 37, 172 {(1976)] and by C, Callan, R: Dashen, and D. Gross
[Phys. Lett. 638, 334 (1976)}], who discovered the properties of

problem.

10,

11.

12,

13,

14,
15.
16.

17.

18,
19,

20,
21,

. by A,
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pure gauge fleld theories discussed in this section.

Fot a feview of gauge field theories, see my 1973 Erice lec-
tuxés.:"Secret symmetries", in Laws of Hadronie Matter, ed.
i@i#hichi (Academic Press, New York and Loandon, 1975),
Sé iép ﬁef. 6.

And some:imes given by me.

I thank Arthur Wightman for awaken-

.ing me ‘from my dogmatic slumbers,

It guftices to assume that the gauge field is without (gauge-

1nva:iént) singularities if we make a stereographic projection
I would love to found the
an ysil on finiteness of the action, without even this as-
bn 1about the behavior of the fields at infinity, but I

of four-space onto a four-sphere,

ot been able to do so.

jnvention. In n-space, € -1.

ud] qa are defined by raising with the appropriate (Euclidean

Symbols with upper

Cor ﬂinkowskian) metric.
_&!_gggg, Bull. Soc, Math. France 84, 251 (1956).

Seé Ref. 10.
Seé_ﬁgg._G.

'A;;;eéét in a box; see the next paragraph.

R. Jackiw and C. Rebbi, Phys. Rev, D14, 517 (1976).

Eyép ;his is true for axial gauge (in infinite space) only if
ve add'additional gauge conditions. (See Ref. 6.)

u. Ati.yah and R, Ward, Comm. Math. Phys. 55, 117 (1977).
Although 1 have just argued that this knowledge {s irrelevant
to’ out immediate purposes, an enormous amount 73S been learned
recently about solutions to the Euclidean gauge-ficld equations,
In"fact, "binstantons” don't exist, but 8|v|-parameter families
of solutions with winding number v do, For a review {(with
references to the original literature) see R, Jackiw, C. Nohl,
and C. Rebbi, "Classical and Semiclassical Solutions to Yang-
Mills Theory" (to appear in the proceedings of the 1977 Banff
'Schooi. to be published by Plenum Press).
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For a treview of the renormalization group applied to gauge
theories, see Ref. 10,

Done by 't Hooft, a hard worker (second paper cited in Ref. 9).
't Hooft's computation has been somewhat simplified. See

A, Belavin and A. M. Polyakov, Nucl., Phys. B 123, 429 (1977);

F. Ore, Phys. Rev. D16, 2577 (1977); 5. Chahda, A. D'Adda,

P. di Vecchia, and F. Nicodemi, Phys. Lett. 72B, 103 (1977).
The analysis reported here is based on C. Callan, R. Dashen,
and D, Gross, Phys. Lett. 66B, 375 (1977). The fact that the
Abeliarr Higgs model in two dimensions doesn't display the
Higzgs phenomenon was discovered independently by two of my
graduate students, Frank De Luccia and Paul Steinhardt, They
dldn’t write up their results because I didn't believe them,

1 take this occasion to apologize to them for my stupidity.
The problem is identical to that of constructing flux tubes in
superconductors. See Ref, 6, and references cited therein.
Indeed, 0 Qacua, with precisely the same interpretation (but
derived in a completely different way), occur in the massive
Schwinger model, quantum electrodynamics of charged fermions
in 1+1 dimensions. [See $. Coleman, R. Jackiw, and L. Suss-
kind, Ann. Phys. (N.Y.) 93, 267 (1975), and S. Coleman, Ann.
Phys. (N.Y.) 101, 239 (197¢).]

the Schwinger model also work for the Higgs model when p? is

The arguments that work for

positive, so we also obtain B vacua in this case despite the
absence of instantons.

K. Wilson, Phys, Rev. D10, 2445 (1974). The standard expres-
sion for W has a factor of -iq where 1 have one of -q/e; the
source of the diffefence is the factor of ie hidden in my
definition of Au.

$. Weinberg, Phys. Rev,D1l, 3583 (1973).

PThe U{1) Problem", gives a characteristically lucid descrip-

This paper, titied

tion of the situation just before 't Hooft's breakthrough.

(As a major unanswercd question, Weinberg lists "How does the

29.

30.
i.

32.

33.

34.

35,

36. -

kY

" into an operator with a pure discrete spectrum,
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“underlying gluon-gauge invariance enforce the equal coupling
“6f the positive- and negative-metric Goldstome bosons to gauge-

" ipvariant operators?’)

J. §. Bell and R.
W. Bardeen, Phys. Rev,

S. L. Adler, Phys. Rev, 177, 2426 (1969).
Jackiw, Nuovo Cimento 60, 47 (1969),

184, 1848 (1969).

J. Kogut and L. Susskind, Phys. Rev.D1L, 3594 (1976).

‘For more details on Fermi integration, see F. A. Berezin, The
Method of Second Quantization (Academic Press, New York and

London, 1966).

The easfest way to fix this up is to stereographically project
Euclidean four-space onto a four-sphere; B is then projected
This changes
the determinant, but only by a factor that is independent of
the gauge field, $Since, as we shall see, our final results
will only depend on ratios of determinants, this change Is
ixrelevant,

To my knowledge, this sum rule was first derived by A. S,
Schwarz, Phys. Lett. 678, 172 (1977). The derivation in the
1iterature closest to the one given here is that of L, Brown,
R. Carlitz, and C. Lee, Phys. Rev. D16, 417 (1977).

This section is mainly afterthoughts; I didn’t know most of
these things at the time these lectures were given,

A related picture of how instantons break SU(2) & SU(2) is
a&vanced by D. Caldi, Phys. Rev. Lett. 39, 121 {1977).

An (apparently) very different picture of how mercons effect
confinement has been advanced by J. Glimm and A. Jaffe ("a
Droplet Model for Quark Confinement" {unpublished)].

G, 't Mooft has advocated completely differeat configurations

'L["On the Phase Transition Towards Permanent Quark Confinement'
" {unpublished)]. ’

The prededing pavagraph is the preduct of conversations with

Michael Peskin, who has observed that a group of two-dimensional
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models analyzed by C, Callan, R, Dashen, and D, Gross [Phys.
Rev. D16, 2526 (1977)] display (in a certain sense) a restora-
tion of chiral symmetry at large scales, the first half of the
above scenario.

R. Crewther, Phys. Lett. 70B, 349 (1977).

R. D. Peccei and H, R. Quinn, Phys. Rev. Lett. 38, 1440 (1977);
Phys. Rev. D16, 1791 (1977). F, Wilczek, Phys. Rev. Lett. 40,
279 (1978). S. Veinberg, Phys. Rev, Lett, 40, 223 (1978) and
"Instantons Without Axions" (unpublished). '
These ideas are the product of discussions with S, Glashow and
D. Nanopoulos.

The key paper on this subject is M., B, Voloshin, I. Yu.
Kobzarev, and L. B, Okun, Yad. Fiz. 20, 1229 (1974) [Sov. J.
Nucl. Phys. 20, 644 (1975)}. The instanton approach to the
problem was developed in §. Coleman, Phys. Rev, D15, 2929
(1977), and C. Callan and §. Coleman, Ref, 8. (Large portions
of the text of this section are plagiarized from these two
papers.) Similar ideas were developed independently by

M. Stone, Phys. Rev, D14, 3568 (1976) and Phys. Lett. §7B, 186
{1977). P. Frampton was. the first to study these phenomena in
the Weinberg-Salam model {Phys. Rev. Lett. 37, 1378 (1976)1;
however, Frampton's conclusions have been criticized severely
{and, T think, correctly) by A, Linde (unpublished). l

8. Coleman, V., Glaser, and A, Martin, Comm. Math. Phys, (in
press}.

See, for example, R. Jackiw, Phys, Rev. D9, 1686 (1974).
Formulas related to the one developed here can be found
throughout the literature. Two references out of many:

J. H. Van Vleck, Proc. Nat, Acad. Sci. 14, 178 (1928).

R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev, D10, 4114
(1974). The derivation given here was developed in conversa-
tions with Tan Affleck. ]

This appendix reports on computations done with C. Callan. A

46, "

47,
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diffetrent attack oii the problém (with the same con-
 1s E. Glldener and A, Patrascioiu, Phys. Rev.D]S,

veference not because these results are novel but
hg§¢ate a standard part of the theory of Weiner in-

5 euﬂix i8 a transcription of an argument of Brown et

Afbif‘r‘gave these lectures at Erice, I repeated them at ¢ the

Ecole Normale Superieure in August and the Lawrence Berkeley Labor—

atory in‘Séptémber. I thank these institutions for their hospi-

tality. - 7% @

During ‘these reruns, I made improvements in parts of the

lectufeSf*iu'large measure in résponse to comuents made at Erice,

and I have ‘incorporated theSe in my notes.
scripts of the d:lscussiof sessions you find
questiousfalrgady answered in detail in the
they didii't Iisten, but that I did.
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