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Abstract

These lectures present an extended introduction to instantons in gauge the-
ories. The lectures consist of several distinct parts. To reveal the physical
meaning of instantons we consider in detail the simplest quantum-mechanical
problem where they appear: tunneling in the double-well potential. This ped-
agogical example was suggested by Polyakov. Then we proceed to quantum
chromodynamics (QCD). The discovery of instantons was instrumental in the
understanding of the vacuum structure of QCD. The € vacuum is described
from the quasiclassical perspective. The second part is devoted to the instan-
ton formalism. We discuss various aspects of the instanton calculations: the
solution per se in different gauges, the instanton measure in QCD and in the
Higgs phase, the impact of external background fields. A related topic we dwell
on is the sphaleron and its interpretation. Finally, the last part deals with the
massless fermions in the instanton transitions. Their impact is drastic both
at the conceptual and technical levels. We explain how the tunneling inter-
pretation changes in the presence of the massless fermions. If the fermions
are chiral rather than Dirac, under certain conditions the theory becomes ill-
defined (Witten’s global anomaly). Although these lectures are self-contained,
they are best read in conjunction with Coleman’s lecture The Uses of Instan-
tons [S. Coleman, Aspects of Symmetry (Cambridge University Press, London,

1985), p. 265].
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Introduction

It appears that all fundamental interactions in nature are of the gauge type.
The modern theory of hadrons — quantum chromodynamics (QCD) —is no
exception. It is based on local gauge invariance with respect to the color group
SU(3), which is realized by an octet of massless gluons. The idea of gauge
invariance, however, is much older and derives from quantum electrodynam-
ics, which was historically the first field-theoretical model in which successful
predictions were obtained. By the end of the forties, theoreticians had al-
ready learned how to calculate all observable quantitites in electrodynamics
in the form of series in o = 1/137. The first steps in QCD in the mid-1970's
were also made in the framework of perturbation theory. However, it grad-
ually became clear that, in contrast to electrodynamics, quark-gluon physics
is not exhausted by perturbation theory. The most interesting phenomena —
the confinement of colored objects and the formation of the hadron spectrum
__ are associated with nonperturbative (i.e. not describable in the framework
of perturbation theory) effects. The latter, in turn, are due to complicated
structure of the QCD vacuum, which is filled with fluctuations of the gluon
field.

It is now clear that the construction of the complete analytical “wave func-
tion” of the vacuum is a very difficult problem. Despite numerous attacks
by theoreticians it still remains unsolved. Nevertheless, quite a lot is already
known. The study of “old,” traditional hadrons gives information about the
fundamental properties of the vacuum. In turn, having obtained this infor-
mation, we can make a number of nonttivial predictions about gluonium and
other poorly investigated aspects of hadron phenomenology.

The corresponding approach has been developed by the authors over a
number of years, but it will not be discussed here. We note only that the
main element is the introduction of several vacuum expectation values. For
example, the intensity of gluon fields in vacuum is obviously measured by the

quantity [1]
(0] GL. Gl 100,

where G, is the gluon field strength tensor (a = 1,...,8 is the color index).
Similarly, the quark condensate expectation value {0|gq|0} serves as a measure

of the quark fields.
In the “final theory,” if such is constructed, it will be possible to calculate

all phenomenological matrix elements on the basis of the Lagrangian of QCD.
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It can already be said that this will require knowledge of nonperturbative
fluctuations in the physical vacuum. Here, phenomenology makes contact with
the purely theoretical development, which as yet has not had great applications,
though it has made possible the reexamination of a number of problems.

In 1975 one of the most beautiful phenomena in quantum chromodynam-
ics was discovered, instantons, classical solutions of the field equations with
nontrivial topology [2]. The beauty of the theoretical constructions has at-
tracted the interest of many physicists and mathematicians, and it is difficult
to overestimate the popularity of instantons. The importance of instantons as
the first example of fluctuations of the gluon field not encompassed by pertur-
bation theory is undoubted. Therefore, it appears appropriate to explain the
physical essence of the phenomenon and derive the basic formulas to enable
the reader to find his (or her) way about the literature.

The original Belavin-Polyakov-Schwarz-Tyupkin solution [3] (BPST instan-
ton) may or may not be the fluctuation which is dominant in the vacuum wave
function. Although there are some numerical evidence in favor of the instanton
dominance [4] the arguments are far from being conclusive. The instanton-
based models of the QCD vacuum do exist, but the last word in this line of
research is yet to be said. Therefore, we will not dwell on this issue. Instead,
we will focus on those aspects of the instanton calculus which are completely
settled and will stay with us forever.

We begin with a simple quantum-mechanical problem that illustrates the
role of nonperturbative fluctuations. This example was analyzed in detail by
Polyakov (5], who made a major contribution to the development of the entire
subject.

A double-well potential will be considered, and the famous problem of the
level splittings will be solved by exploiting an instanton approach, which is
rather awkward in this particular problem, but has an important advantage
over the standard WKB method: it can be directly extended to field theory,
while the standard method cannot. All technical elements of the instanton cal-
culus (the Euclidean time, classical solutions, zero modes and determinants}
which we will encounter later in QCD are introduced in this setting. Having
dealt with the toy model we proceed to QCD. General arguments are presented
revealing a nontrivial topology in the space of the gauge fields. The exis-
tence of distinct classical minima of the “potential” is demonstrated, Classical
trajectories interpolating between these distinct minima (“pre-vacua”) are
BPST instantons. We discuss the explicit form of the instanton, and calculate,
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in a pedagogical manner, the instanton density. The notion of the vacuum
angle § is introduced.

We then briefly consider an applied aspect of the instanton calculus. Instan-
tons submerged in background fields, produced by other fiuctuations, deform.
As a result of this deformation the instanton density changes. The change in
the density caused by the gluon condensate is considered in some detail.

The second part of the lecture is devoted to the role of fermions. Mass-
Jess fermions have a drastic impact both on interpretation of the instanton as &
tunneling trajectory, and on all technical aspects of the instanton calculus. We
first consider the Dirac fermions and explain how the instanton calculations
must be modified. Then a more subtle problem of chiral fermions is addressed.
Here we have to reanalyze anew the very foundations of the procedure, such
as the Euclidean continuation. The chiral fermions are an indispensible el-
ement of supersymmetric guage theories. A brief excursion in the topic of
supersymmetric instantons concludes the lecture.

1. Quantum Mechanics, Imaginary Time,
Path Integrals

In this section, we consider the problem of the one-dimensional motion of
a spinless particle in a potential V(z). This problem is usually treated in
all textbooks on quantum mechanics, but we shall use a somewhat unusual
method to solve it. The reader may find it inconvenient, just as sum rules
[1] are “inconvenient” for finding the eigenvalues of the Schrédinger equation.
But - and this is the most important property — the method can be directly
generalized to field theory.

If we take the mass of the particle equal to unity, m = 1, then the La-
grangian of the system has the simple form

L= %(%)2—17(@). (1)

Suppose that the particle at the initial time (—10/2) is at the point z; and at
the final time (+o/2) at the point z7. An elegant method of expressing the
amplitude of such a process was invented by Feynman [6]. The prescription is
that the amplitude is equal to the sum over all paths joining the world points
{(—t0/2,x;) and (o/2,zs) taken with weight

e
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The action, which we shall denote by the letter § in what follows, is related to

the Liagrangian by
t0/2
8§ = dt L{z, &) . (2)

—50/2
Thus, the transition amplitude is

(zpleHt0|g,) = N/[Dag]eis[m(t)]’ )

where H is the Hamiltonian and exp(—iHtp) is the ordinary evolution operator
of the system. The factor N on the right-hand side is a normalization factor,
to the discussion of which we shall return below. [Dz] denotes integration over
all functions z(¢) with boundary conditions z(—#¢/2) = z; and z(to/2) = zy.
Before we consider dynamical questions, we examine the left-hand side. If
we pass from states with a definite coordinate to states with a definite energy,

Hin) = Enln),
then, obviously,

(@sleT0lay) = 3 " eTH(a s n)(nlz) (4)

and we obtain a sum of oscillating exponentials. If we are interested in the
ground state {and in field theory we are always interested in the lowest state
— the vacuum), it is much more conventent to transform the oscillating expo-
nentials into decreasing expounentials. To this end, we make the substitution
t — —ir. Then in the limit 7¢ — co only a single term survives in the sum
(Eq. (4}), and this directly tells us what are the energy Fy and the wave
function 4o (z) of the lowest tevel, e~ Fomoq)y(x ; Yo ().

In the literature, the transition to the imaginary time is frequently called
the Wick rotation, and the corresponding version of the theory is referred to as
the Euclidean version. Below, we shall see that the substitution ¢ —+ —i7 is in
a certain sense not only a matter of convenience, since it gives a new language
for describing a very important aspect of the theory.

We now turn to the right-hand side of Eq. (3). In the Euclidean formulation,
the action takes the form

sl o [ [— %(g)Q - V(m)] dr, (5)

—‘ro/2
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where we assume the boundary condition ={—70/2) = =, #(70/2) = =y, and
the origin of the energy is chosen such that min V' (z) = 0.

We call 2 1y e ?
T %
S =/ [— (—) +V(m)] dr (6)
E —70/2 2 dT
the Euclidean action. Since Sg > 0, we have acquired an exponentially de-
creasing weight on the right-hand side of Eq. (3). In the present lecture, we:
shall remain in the Buclidean space and shall not return to the MinkOWSI.il
space (i.e. to real time) until Sec. 13; therefore, in what follows we shall omit
the subscript E.
The Euclidean variant of Eq. (3) is

(zsle™ |y = N/[Dz]efs. (7)

It is now time to make the next important step and explain what inte-
gration over all paths actually means. Let X(7) be some function satisfying
the boundary conditions. Then an arbitrary function with the same boundary
conditions can be represented in the form

z{r) = X(1) + chmn('r) R (8)

where z,(7) is a complete set of orthonormal functions that vanish at the

boundary:

1"()/2 1—0
f A7z (T)2m (7) = am, o 2= 0.

—Tg/?.

The measure [Dz] can be chosen in the form

[Dz] =] | % : (9)

The coefficient of proportionality in this relation does not in general have in
itself a particular meaning until the normalization factor N has been fixed.
Now suppose that in the problem under consideration the characteristic
value of the action is large for certain reasons. Well-known is the situation
when the quasiclassical approximation, or in other words, the method of steep-
est descent (the latter, “mathematical” term may be more readily understood
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by some readers), “works.” In other words, the entire integral in (7) is accumu-
lated from regions near the extremum (minimum) of S. The path correspond-
ing to the least action, which we denote by X (7), is known in the literature as

an extremal path, an extremal, or a stationary point. If there is one extremal
and §[X(7)] = So, then

N/[Do:}e‘s ~e 0, (10)

Thus, to find the principal, ezponential factor in the result, it is sufficient to put
in information about a single, extremal path. (If there are several stationary
points, we have in general the sum of the contributions of all the stationary
points.)

There exists a standard procedure which enables us to take the next step
and fix the pre-exponential factor. This operation is already somewhat more
laborious. Suppose for simplicity that there is a single stationary point, X (r).
The following formula expresses, in mathematical language, the fact that X ()
realizes a minimum of the action:

To/

55 = S(X(r) + ba(r)] - S|X(7)] = f

~To /2 dr?

’ drdz(r) [ _Ex V’(X)} =0,

where V' = dV/dz. The equation

d*x
=V, (11)
is of course well-known to the reader from school days (we recall that “the
mass multiplied by the acceleration is equal to the force”). It is the classical
equation of motion of a particle in the potential minus V{z).!
We shall shortly return to this circumstance, but first recall how the pre-
exponential factor in (10) is calculated. It is determined by an entire “beam”
of paths near the extremal path, i.e. by the paths with action that differs little

from Sp. In other words, we take into account only the quadratic deviation:
T0/2 1 d2
S[X(7) + d=(7}] :.S'g+f drdz[— =

—79/2

> sbo+ %V”(X)dm} (12)

(as the reader will recall, there is no term linear in the deviation).

1The minus sign is due to the fact that the Euclidean formulation is considered [see Ref. [6]].
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Suppose we know a complete set of eigenfunctions and eigenvalues of the
equation
d.2

'Eiw“(f) LV (X)zn(r) = EnZnl(T). (13)

Then we can choose these functions as the orthonormalized system which oc-
curs in (8), and the action (12) is transformed to the simple diagonal form

1
S:SO+§;€”,C?1.

Recalling the definition (9) and the rule of Gaussian integration

/+°°d e p( 153) 2n
cexpl — o = —=
—eo 2 Ve

(it is important that after the diagonalization each such integration can be
performed independently of the others), we obtain

(zsle~Hmz:) = e SN[ (14)

Sometimes, instead of the product of eigenvalues one uses the notation

Hs,;lﬂ = [det( - ad; + V”(X(fr)))]—m , (15)

n

which, of course, derives from the theory of ordinary finite-dimensional matri-
ces. In fact, the relation (15) can be regarded as the definition of the determi-
nant of a differential operator. It is here appropriate to make three comirents.
First, the result (14) does not depend on the explicit form of the eigenfunctions
but. only on the eigenvalues. Second, we have assumed that all the ,, are posi-
tive. In most cases, this is so, but in the instanton example several eigenvalues
vanish. The resulting infinity has a simple physical meaning. The problem
of how it should be handled is the subject of the next section. The third and
final comment is the following. The normalization factor N has yet to be fixed.
We shall not attempt to give a general prescription but consider a simple ex-
ample, which will serve us in the future too. Suppose the original particle
with mass m = 1 is placed in the potential V(z) shown in Fig. 1. We do not
need the actual form of this potential, but to achieve “pormalization” to the
harmonic oscillator (in which the potential is usually taken to be mw?z?/2),
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1\V(x)

Fig. 1. The quantum-mechanical problem with the potential of the oscillator type.

we set V/{z = 0) = w?. As the initial and final points of the motion we choose
Ty =Lf = 0.

The rich physical intuition that we each have for potential mechanical mo-
tion enables us to find the extremal from Eq. (11) without knowing the explicit
form of V(). Indeed, this equation describes the motion of a ball on the profile
shown in Fig. 2. At the time —7/2, the ball is displaced from the upper point
to which it returns at the time -+79/2. It is entirely clear that there exists onl3;
cl;)ne path with such properties: X (7) = 0. Any other path corresponds to an
infinite motion with the ball going away to plus or minus co. It is also clear
that the action on the path X{7) = 0 vanishes.

=¥

Fig. 2. The potential appearing in the same problem in the Buclidean time.



212 ITEP Lectures on Particle Physics and Field Theory

Thus, in the given particular problem the general formula (14) becomes

dz ) —-1/2 .
(zy = Ole~fim|z; =0y = N {det(— 2 +w )] {1 + subleading terms),
The eigenfunctions of the operator in the square brackets are the sine and
cosine functions. For instance, the lowest eigenfunction is cos(n7 /7o), the next
is sin(277/7o), and so on. All the eigenvalues ¢, are immediately fixed by the
boundary conditions 2, (£70/2) = 0
n2n?
En = —5 +w?, n=112....
Ta

We have now arrived at the point at which it is impossible to advance
further without saying what is the value of N. To avoid the necessity of
explicit determination of N we split the determinant into two factors:

d2 ) —1/2 B 00 Wgng —1/2]
N[det(fm-l‘W):\ —I:N(J;[l P
o0 2,21~ 1/2
X[H(l—%—%%%)jl . (16)
n=1

Obviously, the first factor corresponds to free motion of the particle, and there-
fore, it must, of course, reproduce the free result:

2n2

o0 —1/2 .
’JT 2 B P,
N(H 2 ) = {zs = 0Ole PTo/?lm:())_;anm_OM g~ PR

oo 2T V27T
Of course, Eq. (17) is somewhat symbolic, but it can be regarded as the defi-
nition of the normalization factor N. We now consider the second, less trivial
factor in Eq. (16). For the infinite product which occurs in it we have the
well-known formula [see e.g. formula (1.431.2) in Ref. (7}

bl 2
Y H (1 + -i—z-) = sinh Ty,
n=1

where in our case y = wTo /7.

(17)
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We now collect all the factors together, take into account (16) and (17),
and write down the final result:

d2 -1/2
(x; =0le”"™2; =0) = N[det(— — +w2)}

dr?
1 sinh wp =y
T 2o WY
S\ 12
= (;) (2 SinhWTo)—l/z, (18)

Going to the limit 79 — oo, we find

Tog—0C ™

1/2
(33_{ — Ole_HTol-'Ei — 0) — (E) efwro/2 (1 + %e—me T+ ) ,

from which it follows that for the lowest state Ey = w/2 and [0(0)]* =
(w/m)'/2. The next term in the expansion corresponds to the level of the
harmonic oscillator with n = 2 [the odd » do not contribute, since for them
¥n(0) = 0]. The results are exact for the harmonic oscillator-and serve as a
zeroth approximation for a potential with small anharmonicity, say (w?/2)z®+

Azt

2. Double-Well (Two-Humped) Potential. Tunneling

In the previous section, we reformulated in the language of Euclidean space
and path integrals one of the most fundamental problems — an oscillator
gystem near the equilibrium position. This problem provides the basis of all
ficld theory. In fact, we have taken into account small oscillations — small
deviations from the equilibrium position — and have made the first step to
ordinary perturbation theory. For more than 20 years, right up to the middle
of the seventies, all field-theoretical models (apart from the small exception
of exactly solvable two-dimensional models) were developed in this, and only
this, direction. The field variables were regarded as a system of an infinitely
large number of oscillators coupled to each other and each possessing zero-
point oscillations; one then considered small deviations, with respect to which
perturbation theory was constructed successively. In this sense, the “infant”
period of quantum chromodynamics, when quark-gluon perturbation theory
was created, did not introduce anything fundamentally new. It was only the
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discovery of instantons which showed that QCD contains effects which cannot
be described if one does not go beyond the framework of small deviations
from the equilibrium position. It is in principle impossible to describe these
effects by expansions in the coupling constant. Here, we again turn to a simple
quantum-mechanical analogy, in which, however, all the main features are

already present.

TV(x)

-1 +1 X
Fig. 3. The double-well potential.

Thus, we again consider the one-dimensional potential motion of a spinless

particle with unit mass. The potential
V() = A@? - ) (19)
is shown in Fig. 3. We fix the parameters A and 7 in such a way that
8\ = w?,

where w is the frequency introduced in the previous section. Then near each
minima which are indicated by the symbols 4n, the curve is identical to the
potential of the previous section. If A < w3, then the wall separating the two
minima is high. Its height is w*/64). Suppose for a moment that it is actually
equal to infinity. Then the lowest state of the system has a twofold degeneracy
— the particle may be in the right-hand well or in the identical left-hand well,
i.e. it executes small oscillations near the point 47 or —7. At first glance, the
solution to our problem should be constructed in exactly the same way. The
expectation value of the coordinate in the ground state should be

(z)o = +n (1 + corrections) or {(z)o = —n (1 + corrections),
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the original symmetry of the system with respect to the substitution z —
—z is broken, Fy = (w/2)(1+ corrections) in both cases, and at small A the
corrections are small. In fact, it is known from courses of quantum mechanics
that this picture is gqualifatively incorrect. The symmetry is not broken, the
expectation value of x for the ground level is ezactly zero, and there is no
degeneracy:

w 2w aio W
EO:E_ _Je w/12/\_2_’
i (20)
w 2w 3 w
j — —w /12)\_.
173 w)\e 2

We note the fact that E; — Eg ~ exp(—w?®/12A) and this quantity cannot be
expanded in a series in A, [It is assumed that w®/A > 1. In reality, Eqs. (20)
begin to “work” when w3/12A 2 6]

Thus, we have gone wrong and failed to take into account an important
clement that leads to qualitative changes. What is this element? Everyone
knows the standard answer given in courses of quantum mechanics. If at the
initial time the particle is concentrated in, say, the left-hand minimum, it
nevertheless feels the existence of the right-hand well despite the fact that the
latter is inaccessible according to the classical equations of motion. Quantum-
mechanical tunneling transfers the wave function from one well to the other
and, in Polyakov’s terminology, “smears” the ground states. The correct wave
function of the ground state is an even superposition of the wave functions in
each well.

We now consider how this phenomenon appears in the imaginary time and
how the technique presented in the previous section is changed. It turns out
— and this is a great good fortune — that all fundamental technical elements
remain unchanged. It is only necessary to take into account the fact that the
classical equations of motion in the imaginary time have not only the trivial
solutions X (7) = const considered earlier but also additional topologically
nontrivial solutions which extend far from both the minima. These solutions
connect the points &7, and they are entirely responsible for the phenomenon
under discussion. We emphasize that in real time there are no additional
classical solutions, since the transition from one minimum to the other occuis
below the barrier and is classically forbidden,

The solutions arise only after the Euclidean rotation. The double-well
potential becomes a two-humped potential of Fig. 4.
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4\

Fig. 4. The two-hump potential relevant to the motion in the Euclidean time.

We consider the calculation of the amplitudes
(le~Hm|—m)  and  {=nle”" ).

The first step consists of solving Eq. (11). The “mechanical profile” for this
equation is shown in Fig. 4. We are interested in solutions of Eq. (11) tha.'t have
finite action in the limit 7o — co, since such solutions are important in the
quasiclassical approximation that is under discussion. Most paths cor.respond
to trajectories on which z — oo as 7 = o0, and they have infinite action. -

A finite action in the limit 7o — 00 is obviously obtained when the particle
stays at the top of a hump, ie. X(r)=n and X{(7r) = -n. The c?ntribut%on
of these trajectories was considered above. Another interesting motion leading
to a finite action as 7p — 00 corresponds to the particle sliding from one hump
and stopping on the other. Thus, we are interested in a path which3begins' at
~75/2 at the point —7 and ends at the point n at the time 7o /2 Physical
intuition suggests that such trajectories exist, though their explicit form for
finite 7o is complicated. We are always interested in only the lowest state, and
therefore we can directly assume that 7o — oo. In this limit, the solution is

very simple:

X(r) = ntanhbi'r—;—g (21)

. . -9 _
(it corresponds to mechanical motion with zero energy, E = (1 /232 - V(z) =
0, so that the equation can be rewritten as a first-order equation

X = -vVaAX* -7

and readily integrated).

3Here we have allowed a slight inaccuracy. If 7o is large but not inﬁnitel, t:he path begins
just to the right of —n and ends just to the left of -+. It is only in the limit 7¢ —* oo that

the end points coincide with 7.
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Such a solution is called instanton (Polyakov proposed the name “pseu-
doparticle,” which can also be found in the literature); the arbitrary param-
eter 7, indicates its center. Of course, there also exist antiinstantons, which
begin at +7 and end at —7. They are obtained from (21) by the substitution
T —T.

Since all the integrals can be calculated, it is easy to obtain a closed
expression for the action of the instanton (we recall that for the instanton
1i? = V(2)):

+ 3

So = S[X(7))inst = / ooer2 = f_ﬂ (=v2X)(X? —pP)dz = il (22)

-0

123 °

We recall that the principal exponential factor in the amplitude is e 24" (see
Eq. (10)). The exponential which occurs in (20) has emerged. Of course, we
still have a long way to go before we can reproduce the complete answer.

We draw attention to an additional property of the instanton, which has
far reaching consequences. The center of the solution may be at any point, and
the action of the instanton does not depend on the position of the center. This
circumstance obviously reflects the symmetry of the original problem. Namely,
the Lagrangian of the system is invariant with respect to shifts in time, and the
time origin can be chosen arbitrarily. Each concrete solution {21) has a definite
position with respect to the origin, and thus there exists an infinite family of
solutions distributed arbitrarily with respect to the origin. Intuitively, it is
clear that the instanton must occur in any physical quantity in the form of an
integral over the position of its center. How does this integral arise formally
and what weight is then obtained? Answers to these questions are given in the
following section.

3. Determinant and Zero Modes

In this section, we find the one-instanton contribution to (—nle”#™ ). We
shall not, of course, be concerned with the exponential factor, which has ac-
tually been found already, but rather the pre-exponential factor, whose cal-
culation presents a more laborious problem. It is true that in the case under
consideration one can employ various devices that significantly simplify the
problem and are sometimes discussed in the literature [8]. However, we shall
proceed in a “brute force” manner, which is the closest approximation to the
method used by 't Hooft [9] to calculate the instanton determinant in QCD.
We hope that this will subsequently enable the reader to reproduce for himself
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(herself) all details of 't Hooft's work, which is central for the entire instanton

problem.
The original formula (14) is conveniently rewritten as

2 -1/2
—n| 'HT°| Y = N |det -—ﬁ—d +w?
(—nle i dr2

det{—(d?/dr?) + V(X

{ det[—(d2/dr2) + w?]

We have multiplied and divided by a known number — the determinant for

the harmonic oscillator see Eq. (18). The harmonic oscillator will serve as a

“point of reference” for manipulations with the more complicated determinant

in the numerator. Substituting the explicit expression X (v} = ntanh(wr/2)
in V"(X), we arrive at the eigenvalue equation

¢ o)+ (w? — S
drz™" 2 cosh?(wr/2)

It can be regarded as a certain Schrédinger equation, which, fortunately, is
very well studied. Indeed, Eq. {23) is described in detail in, for example, the
textbook of Landau and Lifshitz ([10], pp. 73 and 80), and we shall use this
source. We recall that the boundary conditions are z,{+7;/2) = 0 and p =
0o. These conditions are automatically satisfied with exponential accuracy for
bound levels, i.e. for the truly discrete spectrum.?

There are two such levels in Eq. (23). One of them corresponds to the
eigenvalue £; = (3/4)w?, and the other to

Ny
} e~ (1 -+ corrections) .

)xm Ceama(r). (29)

Eg=0.

The wave function of the latter, normalized to unity, is

3w 1
w(r) = \v/;coshg(w'r/Z) ' (24)

The vanishing of the eigenvalue may discourage the reader, since the answer
. —1/2 . .
contains &5, /2! However, this result, g9 = 0, cannot be regarded as a surprise.

4With our boundary conditions, the complete spectrum is, in fact, discrete. The genuine
discrete levels can however be readily distinguished from the quasidiscrete levels formed from
the continuum after the system has been enclosed in the “box” @(+710/2) = 0. The former
are separated by intervals of order w?, while the latter are at a distance of order 1/7§ from
their neighbors.
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Indeed, Eq. (23) actually describes the response of the dynamical system under
consideration to small perturbations imposed on X (7). Since X (v} is a solution
which realizes a “local” minimum of the action, a generic perturbation of X{7)
increases the action. Accordingly, £, is positive. However, we already know
that there is one direction in the functional space along which the solution can
be perturbed without changing the action. We have in mind a shift of the
center. By virtue of the translational invariance,

S[X(r,70)] - S[X (7,7 + 67.)] = 0.

The so-called zero mode (i.e. the mode with £ = 0) is obviously proportional
to X(7,7e) — X{7,7c + d7.). The correctly normalized zero mode has the form

i) =57 (- )X,

or, which is the same as
_175 d
zo(7) = 55 1 - X (7). (25)

The fact that the normalization factor reduces to Sy 172 follows from the ex-
pression (22). It is readily seen that (25) is identical to (24}, and we now see
that this agreement is not fortuitous but a consequence of the translational
invariance.

Thus, integration with respect to the coefficient ¢y corresponding to the
zero mode (see Eqgs. (8) and (9)) is non-Gaussian, and the integral between
infinite limits does not exist at all. The way out of the dilemma is simple.
We shall not calculate this integral explicitly. It is clear that the integration
over dcg is the same as the integration over d7., apart from a coefficient of
proportionality, We have here the same integral over the position of the center
of the instanton whose appearance our intuition required. In the literature,
this trick is sometimes called the introduction of a collective coordinate.

We determine the coeflicient of proportionality. If ¢p changes by Acg, then
z(7) changes by

Ax(T) = zo(T)Acp

(see Eq. (8)). On the other hand, the change Az(r) under a shift Ar, of the
center is

Az(r) =AX(1) = g—:cATc = —/Sozg(T)AT, .
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Equating the two increments, we obtain
dCo = 4/ S() ch - (26)

(In Eq. (26), we have not inserted the minus sign to ensure that as cp varies
from —oo to +o0o the parameter 7. changes in the same interval.) This is not
yet the end of the story, since we agreed to normalize the result to the ordinary
oscillator (we recall that we are interested in the ratio of determinants). In
the oscillator problem, the minimal eigenvalue is w? + 72/78 — w? in the limit
1y — co. Finally,

{det[_(dzf dr2) + V(X)) }-1/2
deA[— (@) + 7]

_ \/Ewdf {det’[—(d?/dr?) + V(X)) }""2 )
T Vo % widet(—(d?/d7?) + w? ’
where det’ denotes the reduced determinant with the zero mode removed.
We emphasize that although we analyzed only a single specific example with
the simplest instanton 7 tanh(w7 /2), the method of dealing with the zero modes
is in fact general. Thus, in the BPST instanton any invariance will generate
a zero mode, and the integration with respect to the corresponding coefficient
must be replaced by integration with respect to some collective coordinate.
We have already learned how to find the Jacobian of the transformation.
We now consider nonzero modes. It is easiest to deal with the second
discrete level, whose eigenvalue is (3/4)w?. If we denote by @ the ratio

_ det/[-(d?/d7?) + V"(X)]

= 28
¢ w—2det[—(d?/d7?) + w?] (28)
then the contribution of this level to ® as 9 — oo is obviously

3

S 29

: (29)

We now turn to other modes, with ¢ > w?. If we did not have the bound-
ary condition z(+7/2) = 0, Eq. (23) in this region would have a continuous
spectrum. Let us forget the boundary conditions for a moment. The general
solution of (23) is given in the book of Landau and Lifshitz; however, we do
not need its explicit form. It is sufficient to know the following. First, the
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solutions with & > w? are labeled by a continuous index p. This index is re-
lated to the eigenvalue £ by p = /€5 — w? and ranges over the entire interval
(0, 00). Second, for the values of the parameters that occur in (23) there is no
reflection. In other words, choosing one of the linearly independent solutions
in such a way that

z,(T) = €77 as T = 400,
we have in the other asymptotic region the same exponential:
zp(1) =P a5 73 —00.

The second exponential, e~"7, which should in principle arise, is absent, and
the entire dynamical effect is reduced to the phase

s, _ 1+ (ipf0) 1+ (2ip/w)

1= (ip/w) 1 - (Gip/w)

(we have used here the formula from [10] on p. 81). The second linearly

independent solution can be chosen in the form z,(—7). The general solution
is Az,(7) + Bzy(—7), where A and B are arbitrary constants.

This information is already sufficient to find the spectrum if we recall the
boundary condition z{£79/2) = 0. The equations for A and B,

() +50s(3) 0t (3) 2 () <0

have nontrivial solutions if and only if

(30)

zp(=70/2)

This gives an equation for p:

zp(70/2) — 41,

eip‘."o"ilsp —_ :I:l,
or, which is the same as,
prp = 0p = TN, n=20,1,.... (31)

We denote the nth solution by . In the case of det[-(d?/d7?)+w?], by which
we normalize, the equation is prp = 7n and the nth solution p,, = rn/m. We
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need to calculate the product®

ﬁ w? Py

4o wi+pl
For any preassigned n, the ratio (w?+p2)/(w? +p?2) is arbitrarily close to unity
as 7o — oo, Only the multiplication of a very large number of factors with
n ~ wty, each of them differing from 1 by an amount of order 1/w7p, gives an
effect. (For n 3 wry, the difference between w?-+ 52 and w?+p, again becomes
unimportant, in complete agreement with our physical intuition.) Under these
conditions, we can write

L()2 +ﬁfn. UJ +pn —~ an(ﬁn - pﬂ-)

where we have made an expansion with respect to the small difference p,, — pa.
Going over from summation over n to integration over p, and using (31) for
— Pn, we obtain on the right-hand side

1 {4, 2pdp f ds, ( p2)
- 2 - = Inf1+5 )dp|.
exp [+ Wfo 7+ W’ exp xJo ap 2 ¥4

Differentiating the phase by means of (30) and introducing the dimension-
less variable y = p/w, we transform this expression identically to

2 [o° 1 2 o1t
—— In(1 = —, 32
exp[ 2/ dy(1+y2+1+4y2) a +y>] . (32)

Finally, combining (32) and (29), we find that

1
- 33
AR (33)

We have now made all the necessary preparations, namely, we have derived
formulas (33), (28), (27), (22), and (18), and we write down the result for the

5The reader may recall that we have already “taken up” in the denominator two eigenvalues,
w242 /72 and w? +47% (72, in calculating the contribution of the discrete modes wnth e=0
and £ = 3w2/4 Therefore, it would be more correct in the denominator to write w? +pﬂ+2
However, as we shall see very shortly, it is the region of very large n of order wrg that is
important, so that the difference between p,y2 and pn is immaterial.
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one-instanton contribution:

(—nle_HTolTi>one-inst = (\/ge~wro/2) (\/g\/ SgeSD)wch . (34)

This result can be trusted as long as

A/ Soe"SOwTQ < 1.

At large 79, when this condition is violated, it is necessary to take into account
paths constructed from many instantons and antiinstantons, and this will be
done in the following section.

1t is appropriate here to make some comments. The factor in the first
brackets corresponds to a simple harmonic oscillator. By separating it, we
have been able to normalize, or regularize, the instanton calculations. A similar
device for regularization is used in quantum chromodynamics. The factor in
the second brackets can naturally be called the instanton density. Besides the
exponential factor e=5°, the density contains the pre-exponential /Sy, which
is associated with the existence of the zero mode. This circumstance is also of a
general nature. In quantum chromodynamics too, each zero mode is associated
with 1/Sy. Finally, the existence of the zero mode leads to the appearance of a
regularization frequency and of integration over the collective coordinate wdr,.

We wish to emphasize that is is worth remembering the lessons we have
learned, since they can be directly transferred to the BPST instanton. The
only thing specific in the present case is the number, \/ﬁ/_ﬂ' If this number
is not particularly important (and in QCD), as we shall see below, this is in-
deed the case), all the remaining results can be reconstructed almost at once,
without calculations. We have given so much attention to the relatively simple
determinant for a pedagogical reason — to avoid greater boredom in the case
of the BPST instanton.

4. Instanton Gas

It remains for us to make the final, small step to reproduce formula (20).
The energy of the lowest state is determined by the transition to the limit
Tp —+ oo. We cannot go to this limit directly in Eq. (34). At very large o,
paths constructed of many instantons and antiinstantons are important. If the
distance beiween their centers is large, such a path is also a classical solution.
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AxiT)
+1

a¥

T4 T2 T3

-'n—

Fig. 5. The chain of n well-separated instantons (antiinstantons).

Suppose we have n instantons or antiinstantons with centers m,72,...,n
{Fig. 5). The points 7; satisfy the condition
To
E 3
and otherwise can be distributed arbitrarily. If the characteristic intervals
satisfy |7 — ;| 3> w™? (we shall verify the condition o posteriori), then the
action corresponding to such a configuration is n.Sg, where Sp is the action of
one instanton. With regard to the determinant, it is obvious that if we did
not have the n narrow transition regions (near 71,7z, .. ., 7») we should obtain
the same result as in the case of the harmonic oscillator, \/JJFe“’"D/ 2 The
transition regions lead to a correction, and we now know in what way:

n n
\/Eemw-mﬂ = (i_)e—wm/2( E, lgoe—Su) H(w dr;).
T Vo Vo |
Finally, the contribution of the n-instanton configuration can be written in

the form
w T0/2 Tn o
\/:e_“”"/gd”/ wd'rnf wdTn_l---f wdT
m —T0/2 —70/2 —To/2
— 267WT°/2dn (UJT{))“ ,
\ o n!

where d denotes the instanton density,

d= \/g V/Soe 5% (35)

”
—-2E<T1<T2<---<Tn<
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The amplitudes {—n|e~f7|n) and (n|e ™|n) are obtained by summation over
7. In the first case, we start from —# and arrive at +n and therefore the number
of pseudoparticles is odd. In the second case, conversely, only an even number
of pseudoparticles works:

_nle Hmln) = W pmwroj2 WT0d)"
e ) = [l

= \/gew”/z sinh{w7d) , (36)

—H W wrod)™ W —wm
ey = 3 [l [t s
n=0,2,... ’

Going to the limit 79 — oo, we immediately reproduce formula (20) for the
energy of the lowest state. Denoting the ground state of the system by |0}, we
see that (n]0) = (—5|0) = (w/4w)'/4, i.e. the symmetry between the right- and
left-hand wells is, indeed, not broken.

We now return to the assumption that the characteristic distances between
the centers of the instantons are large,

I7s = 7] > w™,

and consider how well it works. It is clear that the sums in (36) converge well,
and all terms with number n » dwy are unimportant. Thus, naga ~ dwm
and |7; — 7jlchar ~ d”lw™!. Having at our disposal the free parameter A, we
can achieve an arbitrary smallness of d, since d — 0 as e"/1?* in the limit
A= 0,

Thus, for A <« 1 we are fully justified in “stringing” instantons and an-
tiinstantons on one another, forming thereby a chain of noninteracting pseu-
doparticles. Noninteracting in the sense that they are all far from one another,
know nothing about the remaining partners, and the total weight function is
obtained by multiplying the individual weight functions [d® in formulas (36)].

Such an approximation is called a dilute instanton gas. This has been
exploited particularly by Callan, Dashen and Gross [11] in quantum chromo-
dynamics. Unfortunately, in QCD we do not have free parameters like A that
can be kept small. Therefore, a dilute instanton gas is not suitable from the
quantitative point of view in QCD, and the most we can extract [rom it are
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heuristic indications. Further details regarding attempts to improve the in-
stanton gas approximation (the so-called, instanton liquid) can be found in
Ref. [4].

To conclude the section, we note that a somewhat more extensive exposition
of the instanton approach to the double-well, potential problem is contained in
Coleman’s lecture [8]. The reader interested in special questions, for example,
situations not covered by the gas approximation in quantum mechanics, must

consult Ref. [12].

5. Tunneling in Quantum Chromodynamics

5.1. Nontrivial Topology in the Space of Fields in the
Yang-Mills Theories

Now, when we are done with the toy model, we can pass to real QCD. The
Lagrangian of the theory has the form

1 r

SOG4 Y H(iDuy — M)

sz4 i

where the sum runs over all quark flavors, G, is the gluon field strength

tensor,
Go, = B, A% — 8, A% + gf**° AL A,

g is the gauge coupling constant, f3%¢ stands for the structure constants of
the gauge group. In QCD the gauge group is SU(3); the quarks are described
by the Dirac fields ¢ transforming according to the fundamental (triplet)
representation of SU(3). The issue to be discussed in this section is independent
of the particular choice of the gauge group and the presence {absence) of the
quark fields. To make the picture as transparent as possible we will disregard,
for the time being, the quarks, and consider the simplest non-Abelian group,
SU(2). Of course, later on we will include quarks and pass from SU(2) to
SU(3).

If tunneling is important for understanding the structure of QCD, the first
question to be asked is from where to where does the system tunnel.

At first glance it is not obvious at all that the Lagrangian of gluodynamics
has a discrete set of degenerate classical minima. In the double-well potential
problem this was evident. The main distinction is due to the fact that in
the field theory the number of degrees of freedom is infinite, while in the toy
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example of the previous sections we dealt with only one degree of freedom. The
space of fields in QCD is infinitely-dimensional, Most of these field-theoretical
degrees of freedom are oscillator-like and, thus, “uninteresting.” Our task is
to single out such degree(s) of freedom which tunnel and are delocalized in
the space of fields, much in the same way as the genuine ground state wave
function in the double-well potential is not localized in any of the two minima,
but is rather smeared along the z-axis.

Below, we will demonstrate that in QCD there exists one such direction
in the infinitely-dimensional space of fields. If we forget for a while about
all other degrees of freedom, and focus on this chosen degree of freedom, we
will see that the corresponding dynamics, being somewhat more complicated
than that of the double-well potential system, is similar in one aspect: it
calls for the consideration of tunneling. The closest analogy one can keep in
mind in this context is quantum mechanics of a particle living on a vertically
oriented circle subjected to a constant gravitational force (Fig. 6). Classically
the particle with the lowest possible energy (the ground state of the system)
Jjust stays at rest at the bottom of the circle. Quantum-mechanically, the zero-
point oscillations come into play. Within the perturbative treatment, we deal
exclusively with small oscillations near the equilibrium point at the bottom of
the circle. For such small oscillations, the existence of the upper part of the
circle plays no role. It could have been eliminated altogether with no impact
on the zero-point oscillations,

From the courses of quantum mechanics it is known, however, that the gen-
uine ground-state wave function is different. The particle oscillating near the

Fz=mg

Fig. 6. Quantum mechanics of a particle (#) on a one-dimensional topologically nontrivial
manifold, circle.
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origin “feels” that it can wind around the circle to which it belongs, tunneling
under the potential barrier it experiences at the top of the circle.

To single out the relevant degree of freedom in the infinitely-dimensional
space of the gluon fields, it is necessary to proceed to the Hamiltonian formula-
tion of the Yang-Mills theory which implies, of course, that the time component
of the four-potential has to be gauged away, Ag = 0. Then,

H = %dem{EaE“ + B°B®}

where M is the Hamiltonian and Ef = A¢ are to be treated as canonical
momenta,

Two subtle points are to be mentioned in connection with this Hamiltonian.
First, the equation divE = p, inherent to the original Yang-Mills theory, does
not stemn from this Hamiltonian per se. This equation must be imposed as a
constraint on the states from the Hilbert space by hand. Second, the gauge
freedom is not fully eliminated. Gauge transformations which depend on x
but not ¢ are still allowed. This freedom is reflected in the fact that, instead of
two transverse degrees of freedom A 1, the Hamiltonian above has three (three
components of A). Imposing, say, the Coulomb gauge condition,

9;4; =0

we could get rid of the “superfluous” degree of freedom, a procedure quite
standard in perturbation theory (in the Coulomb gauge). Alas! If we want to
keep and reveal the topologically nontrivial structure of the space of fields, the
Coulomb gauge condition can not be imposed. We have to work, with certain
care, with the “undergauged” Hamiltonian.

Quasiclassically the state of the system described by this Hamiltonian at
any given moment of time is characterized by the field configuration A%(x).
Since we are interested in the zero-energy states (classically, this is obviously
the minimal energy) A% must be pure gauge,

A o = gv(x)aiv-‘(x)

where IJ is a matrix belonging to SU(2) and depending on the spafial compo-
nents of the four-coordinate.

Moreover, we are interested only in those zero-energy states which might
be connected with each other by tunneling transitions, i.e. the corresponding
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classical action must be finite. The latter requirement results in the following
boundary condition (see e.g. Ref. {11] for a detailed discussion)

U(jx| — 00) =1,

or any other constant matrix Uy independent of the direction in the three-
dimensional space along which x tends to infinity. This boundary condition
compactifies our three-dimensional space which becomes topologically equiva-
lent to three-dimensional sphere.

On the other hand, the group space of SU{2) is also a three-dimensional
sphere. Indeed, any matrix belonging to SU(2) can be parametrized as

M=A+iBo, MeSU(@2).

Here A and B are four real parameters; o are the Pauli matrices. Both condi-
tions, Mt M = 1 and det M = 1, are met provided

A+ B?=1,

Since U(x) is a matrix from SU(2), and the space of all coordinates x is
topologically equivalent to a sphere {after compactification U(|x| — oo) = 1),
the function U{x) realizes a mapping of the sphere in the coordinate space onto
a sphere in the group space. Intuitively it is quite obvious that all continucus
mappings S3 — 53 are classified according to the number of coverings. This
number will be the number of times we sweep the group sphere S when the
coordinate x sweeps the sphere in the coordinate space once. The number
of coverings can be zero (topologically trivial mapping}, one, two, and so on.
The number of coverings can be negative too, since the mappings S5 —+ S; are
orientable [13]. This fact is especially transparent for the mappings S} —» S,
i.e. circle onto circle. If one circle is swept in the clockwise direction and the
other one in the anticlockwise, we say that the number of coverings is —1.

In other words, the matrices U(x) can be sorted out in distinct classes
labeled by an integer number, U,(x), n = 0, £1, +2, ..., which is referred
to as the winding number. All matrices belonging to a given class U, (x) are
reducible to each other by a continuous x-dependent gauge transformation. At
the same time, no continuous gauge transformation can transform U, (x) into
Un/(x) if n # n'. The unit matrix represents the class Up(x). For n = 1 one
can take, for instance,®

P . .
Let us note in passing that exactly the same topological classification is the basis of the
theory of Skyrmions, see Ref. [14] for a review.
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. xo
Uy(x) = exp [zﬂ'—-——“(x2 m p2)1f2} '

where p is an arbitrary parameter. An example of the matrix from U, is UT.

Any field configuration AH(x)|vac = (i/9)Un(x}8:U,; 1(x), being pure gauge,
corresponds to the lowest possible energy — the zero energy. As a matter of
fact, the set of points {U,} in the space of fields, obvicusly consists simply of
the gauge images of one and the same physical point (analogous to the bottom
of the circle in Fig. 6). The fact that the matrices U, from different classes
are not continuously transformable to each other indicates the existence of a
“hole” in the space of fields, with a noncontractible loop winding around this
“hole”.

We are finally ready to identify the degree of freedom corresponding to the
motion along this circle. Let us consider the vector K,

a G cabc 4a 4b
K, = 2008 (Azaﬂ,Aﬁ +1; AUAaAf,) .

The vector K, is called the Chern-Simons current; it plays an important role
in the instanton calculus. We will encounter it more than once in what follows.

Now, define the charge K corresponding to the Chern-Simons current,

g 3
K= Fom3 /Ko(x)d T,

It is not difficult to show that for any pure gauge field A7(x) the Chern-Simons
charge K measures the winding number. For any field 4;(x) = (¢/g)Un(x)8;
U7 (x) we have’

K=mn,

Summarizing, moving in the “direction of X” in the space of fields we
observe that this particular direction has the topology of circle. The points K
and X+ 1, and K — 1,... are physically one and the same point. The integer
values of X correspond to the bottom of the circle in Fig. 6.

7 Ezercise: Prove the assertion formulated in the above paragraph. In case of difficulties
consult Coleman’s lecture [8.
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-
K

:"hlg. 7 1N(.:mt;rivia] topollogy i.n the space of gauge fields in the X direction. The length of
e circle is 1. The vertical lines indicate the strength of a potential acting on the effectiv
degree of freedom living on the circle. )

/PVUC)

-2 -1 0 L 2 X

Fig. 8. If we unwind the circle of Fig. 7 onto a line we get a periodic potential.

I.t is convenient to visualize dynamics of the Yang-Mills system in the “di-
rection of K” as shown in Fig. 7. The vertical lines indicate the potential energy
— the higher the line the larger the energy. It is well-known (see e.g. Ref [15])
.that the only consistent way of treating the quantum-mechanical systen;s liv-
Ing on a circle (angle-type degrees of freedom) is to cut the circle and map it
male times onto a straight line. In other words, we pretend that the variable
K lives on the line (Fig. 8). Any integer value of X in I ig. 8 corresponds to a
pure gauge configuration with zero energy. On the other hand, if K £ n the
'ﬁeld strength fensor is nonvanishing and the energy of the field configuration
1s positive. Viewed as a function on the line, the potential energy V(K) is, of
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course, periodic — with the unit period. To take into account the'fa.ct -thr:}t
the original problem is formulated on the circle, we impose the (quasi)periodic
Bloch boundary condition on the wave function ¥,

T(K+1) =P P(K).

The phase @ appearing in the Bloch quasiperiodic Poundary conditi'on is a;
hidden parameter of QCD, the vacuum angle. We will return‘ to the' issue o
the vacuum angle later on. The classical minima of the potential of Fig. 8 f:an
be called pre-vacua. The correct wave-function of the qual}tum-mechamca]
vacuum state of the Bloch form is built as a linear combination of these pre-
vacua. ‘

We would like to emphasize here a subtle point which in manj_r presentations
remains fogged. It might seem that the systems depicted in F‘-lgs. 7.and 8 (la
particle on a circle and that in the periodic potential) alte physically 1dent1ca1.
This is not quite the case. In the periodic potentials, say 1.n c‘ry.stals, one can al-
ways introduce impurities that would slightly violate periodicity. For a syst.em
on a circle this cannot be done. The correct analog system f‘or gluodynamics,
where the gauge invariance is a sacred principle, is that of Iig. 7. | .

Assume that at t = —oc and at { = +co our system is at the: clsflssncal min-
imum (zero-energy state). Assume also that at ¢ = —co the winding number
K =n while at t = +o00 K = n % 1. In Fig. 7 this means that our sys.tem tun-
nels from the point marked by the closed circle to the very same point under
the hump of the potential energy. . .

Consider now a field configuration A4, (t,x) continuously interPolatlng {with
the minimal action) between these two states in the Euclidean time, the least-
action tunneling trajectory. This is the BPST instanton.

The fact that the BPST instantons describe tunnelings in t'he space of fields,
which possesses noncontractible paths, was realized by V. Gribov shortly af‘ter
the discovery of the BPST instantons.? Almost simultane?usly the. tunnehlng
picture was revealed in Refs. [16] and [17]. A very pedagogical a1.1d 1llust:ra.t1ve
discussion of the tunmeling interpretation given in the Minko't_uskz spaf:e 1.5 pre-

sented in Ref. [18] which may be recommended to the reader just beginning to

study instanton calculus,

83%ee e.g. a remark in Ref. (5] where Polyakov acknowledges Gribov's suggestion of the
tunneling interpretation.
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The analysis outlined above (the one based on the Hamiltonian formu-
lation) is convenient for establishing the existence of a nontrivial topology,
nonequivalent vacuum states and, hence, the existence of nontrivial interpo-
lating field configurations corresponding to tunneling. As we already know,
the minimal action is achieved for the solutions of the classical equations of
motion (in Euclidean time) with the given boundary conditions. In practice,
however, the Hamiltonian gauge 4 = 0 is rarely used in constructing these
solutions. This gauge is extremely inconvenient for this purpose.

Below we will describe a standard procedure based on a specific ansatz for
Ay (z) in which all four Lorents components of A, are nonvanishing. This
ansatz entangles the color and Lorentz indices; the field configurations emerg-
ing in this way are, following Polyakov, generically referred to as “hedgehogs”.

Since the solutions we are going to deal with are those of the Euclidean
equations of motion, the first question to be asked is what needs to be done
with QCD in order to pass to the Euclidean time. One can choose two alter-
native routes. In pure Yang-Mills theory with no fermions, it is advantageous,
from the very beginning, to formulate a Euclidean version of the theory, and
work only with this version. With the instanton calculations we will be never
required to return to the original Minkowski version of the theory. The Eu-
clidean formulation can be also developed in the presence of fermions, provided
all fermions in the theory are described by the Dirac fields, i.e. are nonchiral.
We will follow this route almost up to the very end of the lecture. The approach
does not work, however, for chiral fermions, and in many supersymmetric field

theories. For such problems one must choose the second route, which will be
discussed in Sec. 13.

5.2. & Vacuum

The existence of a noncontractable loop in the space of fields A, leads to dras-
tic consequences for the vacuum structure in non-Abelian gauge theories, Let
us take a closer look at the potential of Fig. 8. The argument presented below
is formulated in quasiclassical language. One should keep in mind, however,
that the general conclusion is valid even though the quasiclassical approxima-
tion is inappropriate in quantum chromodynamics where the coupling constant
becomes large at large distances.

The lowest-energy state of the system depicted in Fig. 8, classically, is in
one of the minima of the potential. Quantum-mechanically the zero point
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oscillations arise. The wave function® corresponding to oscillations near the
nth zero-energy state, ¥, is localized near the corresponding minimuim. The
genuine wave function is delocalized, however,

‘1'6 — Z BinG‘I’n ,

n=0,+1,12,...
where # is a parameter,

0<8<2m,

analogous to the quasimomentum in the physics of crystals [15]. The nth
term in the sum can be called a pre-vacuum while the total sum represents
the 8 vacuum of QCD. The vacuum angle § is a global fundamental constant
characterizing the boundary condition on the wave function. It does not make
sense to say that in one part of the space @ takes some value, while in anotl_ler
part @ takes a different value, or that  depends on time. The worlds with
different values of # have orthogonal wave functions; for any operator O from
the Hilbert space of the physical states

(To|OTe) =0 ifO£0 .

This property is referred to as the superselection rule. The energy c.)f l‘l’g can
(and does) depend on #. From the definition of the vacuum angle it is clear
that the 8 dependence of all physical quantities, including the vacuum energy,
must be periodic, with the period 2. .

Since all states U, are degenerate in energy the question is often raised on
why one should form a linear combination corresponding to the & vacuum. Is
it possible to take, say, ¥¢ as the vacuum wave function? '

This question can be answered at different levels. Purely theoretma'lly,
if we want to implement the full gauge invariance of the theory, including
the invariance under “large” gauge transformations, we must pass from \If.n
to ¥y, At a more pragmatic level one can say that introduction _Of Ty is
necessary to maintain the property of the cluster decomposition, which must
take place in any sensible field theory. (We are reminded that the cluster
decomposition means that the vacuum expectation value of the T' product of
any two operators, O)(z1) and O(zs), at large separations |z; — x| — o0

9n application to QCD we should rather use the term wave functional; nevertheless, we will
continue referring to the wave function.
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must tend to (01)(0s).) If the vacuum wave function is chosen to be ¥,
this property would not be valid, as we will see below. Finally, by proceeding
to ¥y we ensure that the vacuum state is stable under small perturbations.
This is not the case if the vacuum wave function is ¥,.. A small mass term of
the quark fields would then cause a drastic restructuring of the vacuum wave
function.

Although the physical meaning of the parameter 9 is absolutely transpar-
ent within the Hamiltonian formulation, when we speak practically of instan-
tons in field theory we keep in mind the Lagrangian formulation based on the
path-integral formalism. In the Lagrangian formalism the vacuum angle is
introduced as the # term in the Lagrangian,

1o 2
-Gy Gpu/ + LG ’ LB =0—G% G°

L= 4 B o2 ey

where

G~ ety o1,
Note that if & # 0 or m, the @ term violates P and T invariance.

Before the discovery of the instantons it was believed that QCD naturally
conserves I” and C'P. Indeed, the only gauge invariant Lorentz scalar operator
one could construct from the A, fields of dimension 4 violating P and 7' is G&.
This operator is a full divergency, GG = 8, K, where K, is the Chern-Simons
current. It was believed that full divergencies have no impact on the action.

In the instanton field, however, the integral of G¢ does not vanish. The
reasons for that will be explained below. What is important for us now is the
tact that adding the # term to the QCD Lagrangian we do break P and CP in
the strong interactions if  # 0. Since it is known experimentally, that P and
C'P symmetries are conserved in the strong interactions, to a very high degree
of accuracy, this means that in nature the vacuum angle is fine-tuned, and is
very close to zero. (As a matter of fact, estimates show that § < 109 (19].)
Thus, with the advent of instantons the naturalness of (QCD is gone. Can this
fine-tuning be naturally explained? There exist several suggestions as to how
one could solve the problem of P and C'P conservation in QCD in a natural
way. One of the most popular is the axion conjecture [20]. This topic, however,
definitely lies outside the scope of the present lecture. Interested readers are
referred to Ref. [21] for a pedagogical review. We will simply assume that
6 = 0, although theoretically it could take any value from the interval [0, 2n].
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6. Euclidean Formulation of QCD

As we said above, we are concerned with the solution of classical equations in
Buclidean space. Therefore, we first formulate the Fuclidean version of QCD.
We give the formulas for the transition from Minkowski to Euclidean space.
In Minkowski space one distinguishes between the contravariant and covariant
vectors, v* and v, respectively. (x =0,1,2,3.) The spatial vector v coincides
with the components of the contravariant four-vector, v = {v!,4%,1%}. In
Euclidean space the distinction between the lower and upper vectorial indices
is immaterial, we consider just one vector 9,(¢ = 1,2,3,4). {In this section
the caret is used to denote all quantities on Euclidean space.) In transition to
Euclidean the spatial coordinates are not changed, #; = z*, i = 1,2, 3. For the
time coordinate z¢, we make the substitution

%o = —iT4. (37)

Clearly, when xg is continued to imaginary values the zeroth component of the
vector potential 4, also becomes imaginary.
We define the Euclidean vector potential A, as follows:

A™ = — Ay, (m=1,2,3), A= iA4 (38)

With this definition, the quantities fl“ (g = 1,...,4) form a Euclidean vec-
tor. The difference between formulas (38) and the corresponding relations for
the vector z* is introduced for convenience in the expression of the following
formulas.1®

Thus, for the operator of covariant differentiation

D, = 8, — igAZT*, (39)

where T% are the matrices of the generators in the representation being con-

sidered, we obtain
Dm = *Dm, Dg = 1D4 )

R 8  iarma (40)
D“ = —3—53—; — %gA#T .
For the field strength tensor G,. we obtain the formulas

105f we use the definition Am = A™ {m = 1,2,3), then in all the following connection
formulas it is necessary to make the substitution g — —g.
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where the Euclidean field strength tensor @ﬁy,

ga =9

Ao o ia abe jb 4
=y 'C,“)?E:AV — %‘;A“JFgf CA#A:’; (,LL,V: 1,,4) (42)

can be expressed in terms of A, and 8/92,, in the same way as the Minkowskian
Gy

To complete the transition to the Fuclidean space, what remain are the
formulas for the Fermi fields. We begin with the definition of four Hermitian
~ matrices %,,:

’?4=’YU= ’?mz“ﬁ’fm (m:1|2|3))

. (43)
{’Y.“'”YV}:Z(SF‘V (‘U‘,VZI,...,"-i),

where vy and 4™ are the ordinary Dirac matrices.

The fields ¢ and 4 are regarded as independent anticommuting variables,
with respect to which integration is performed in the functional integral. On
the transition to the Euclidean space, it is convenient to define the variables
1 and o as

Y=g, =i (44)

Note that under rotations of the pseudo-Euclidean space, t transforms as
¥*vo. In the Euclidean space, 1 transforms as /. Indeed, under infinitesimal
rotations of the pseudo-Euclidean space characterized by the parameters wy,
(1, v =0,1,...,3) the spinor v varies as follows:

1
g = *Z('Yﬂ'Yv - 'YU'Y.LL)“-’MVV‘) .

For the change in ¢ = ¥*yy we deduce from this

Sl ) = — 2t Fart — bty — Lo v
(790} = = 2% 0% (n vy — w e Iew™ = 2T 0) (v — )

so that 9] vo1)2 is a scalar and ¥ yov,42 a vector.

On the transition to the Euclidean space, the parameters wp, (m,n =
1,2, 3) do not change, and wo,, = iw4, (because of the substitution zp = —iz4).
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For the variations of 9 and %+ under rotations, we obtain

: o a A T 5 1 . oA PO

= (’Yﬂ’Yv VoY )t syt = *Z?.b'}- (Fue — W) opw

so that 1/)1'"1!)2 and 1,bi"fy,ﬂ,b2 are a scalar and vector, respectively.
Finally, we can write down an expression for the Euclidean action:

iS = -3,

a a T g o a
S = /d4$[— ZGH’VG'”'V +¢(1’Y#D# — M)‘l/) +932 ZGHVGF“’] L] (45)

— ~
S = /d4 [4@;,,0“ (i, D, — M) + wsg SG2, Czw,} ,
where it is assumed that 4 is a column in the space of flavors {with color
index), and M is a matrix in this space. Note that in the Euclidean space the
Levi-Civita tensor €, is defined in such a way that 1234 = 1.

Below, we shall use the Euclidean space and omit the caret. The formulas
given above make it possible to relate the quantities in the pseudo-Euclidean
and Fuclidean spaces.

To conclude the section, we note that if we are considering quantities such
as the vacuum expectation values of the time-ordered products of currents for
space-like external momenta, i.e. when the sources do not produce real hadrons
from the vacuum, the Euclidean formulation is not only merely possible but
in fact is more adequate than the pseudo-Euclidean. The region of timelike
momenta, where there are singularities, can be reached by means of analytic
continuation. Such an approach is particularly necessary for quantum chromo-
dynamics, for which the fundamental objects of the theory — the quarks and
gluons — have meaning only in the Euclidean domain, and the real singularities
corresponding to hadrons have to be obtained.

7. BPST Instantons General Properties
7.1. Finileness of the Action and the Topological Charge

We have learned that in quantitative description of tunneling an important
part is played by solutions that give a minimum of the Euclidean action in
the limit 75 — oo0. In general, the action increases unboundedly in the limit
Te — 00, and the condition that it be finite imposes strong restrictions on the

paths.
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Thus, in the quantum-mechanical example we have analyzed in Sec. 2, the
finite-action condition means that the function z(7) as 7 — Zoo must have
the limits t#. In this way there arises naturally a topological classification of
functions giving a finite action on the basis of their limiting values. Formally,
a topological charge can be introduced as follows:

Q-2 /+oo dtaft) = ) ~ (=)
M J oo 2n

It is obvious that ¢} can take on the values 0, +1, —1. Functions with differ-
ent () cannot be deformed into one another by a continuous deformation that
leaves the action finite. Therefore, in each of the classes @ = 0, +1, —1 there
exists a corresponding minimum of the action and corresponding functions that
realize it. The instanton and antiinstanton realize minima for Q = +1.

We now turn to gluodynamics — the theory of non-Abelian vector fields
— and consider first the case of the group SU(2). We pose the same question:
what must be the behavior of the vector fields A% as z -+ oo if the action is
to be finite? (We have in mind the Euclidean action $; see Eq. (45).) It is
clear that the field strength tensor Gj,, must decrease more rapidly than 1/z%.
But this by no means implies that the fields A}, must decrease faster than 1/z.
Indeed, suppose Aj, in the limit  — 0o has the form

T . )
Ap = g?A"t ;—;}188;554_ (46)

where we have introduced matrix notation: § is a unitary unimedular matrix
that depends on the angles in the Euclidean space. Although the angular
components of A, are proportional to 1/z, it is clear that in the region in
which the expression (46) holds the field strength tensor 7%, vanishes, since
A}, has a purely gauge form.

Thus, the behavior of Aj, at large z is determined by the matrix S, which
depends on the angles. Under a gauge transformation of A, defined!! by the
matrix U (z):

Ay = Ut AU +iU0,U

the matrix S is replaced by Ut (z — o0)S. It would appear that one can
always choose U(z) such that U{z — oo) = § and thus remove the terms 1/z

11Warning: Although one and the same letter U is used here and in Sec. 5, these are different
gauge matrices which depend on different variables: on the spatial coordinate x in Sec. 5,
and on the Euclidean four-coordinate z, here.
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from A,. However, this argument is correct only if the matrix U(z) does not
have singularities at any value of z. Otherwise, the problem of the behavior of
A, (x) is transferred from the point at infinity to the position of the singularity
of U{z).

As a result, the problem of classifying the fields A% which give finite action
reduces to the topological classification of the matrices §. We shall not present
this classification, which was obtained in the pioneering paper of Ref. [3], but
rather give examples of nontrivial {(not reducible to the unit matrix) matrices
8. For example, we have the matrix
x4 +iXT

o (47)
It corresponds to unit topological charge (there is a one-to-one correspondence
between the space of unitary unimodular matrices and the points of the hy-
persphere in Fuclidean space). To topological charge n there corresponds a
matrix of the form

S =

Sp=(S1)%  n=0,+1,%2,.... (48)

Of course, one could choose a different form of the matrix § corresponding to
the charge n, but the difference between it and S, reduces to a topologically
trivial gauge transformation.

For the careful reader it should be clear already that there exist two related,
but not identical topological arguments. The first argument, discussed in detail
in Sec. 5, reveals the existence of the distinct topologically inequivalent zero-
energy states. Outlined here is a four-dimensional topological aspect; it refers
to the topology of the trajectories connecting (in the Euclidean space-time)
the distinct gzero-energy states discussed in Sec. 5, The field configurations
Au(z4,x) satisfying Eq. (46) with § = S interpolate between the state with
the winding number K and that with the winding number K + 1. (To see that
this is indeed the case we must, of course, transform the instanton into the
Ao = 0 gauge,see Sec. 8.4.) For § = 53 we deal with the trajectory A,(z4,x)
connecting K and K + 2, ete. The topological charge @ of any given field
configuration A, (x4, x) satisfying Eq. (46) is actually nothing but

Q=K -K,

where the prime marks the distant (Euclidean) future while the unprimed
quantity refers to the distant (Euclidean) past. A gauge-invariant integral
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representation exist for the topological charge Q (making unnecessary the tran-
sition to the Ay = 0 gauge):

2

_ g 4 a
Q= 3972 d a:G'Wwa, {49)
where
G—!a 1 a
= _iep‘.v‘fﬁnyJ) €laa¢ =1. (50)

The validity of Eq. (49) can be verified by using the fact that Gﬁéﬁv can be
represented in the form of a total derivative,

Guvé.uu =K, ,

a a 1
I{p’ = 26#,,75 (AVS,YAd + ggeabcAsA:’Ag) ,

s0 that the volume integral (49) can be transformed into an integral over the
surface of a large sphere embedded in four-dimensional space, where A% has
the form (46). !

7.2. The Distinguished Role of the Group SU(2)

Hitherto, we have discussed the group SU(2). For groups different from SU(2),
the construction of instanton solutions with n = 1 reduces to the case of
S.U(2) by means of separation of SU(2) subgroups. Why is the group SU(2)
distinguished? We shall attempt to explain this without using topological
terminology.

. The possibility of deformation of the matrices S is determined by the gauge
invariance discussed above. To fix the gauge we represent an arbitrary field
A, in the form

Aul2) = S(2)Au(2)S (2) +5(2)8, 5™ (z) (51)

where fhe field JL, satisfies definite gauge conditions (for example, Ay = 0
or 6,,?{1,“ =0(m=1, 2,3))~. This fixing does not completely determine the
transition to the new fields A,(z) and S(z), since A,, is invariant under global
transformations of the form

S(z) = S(x)Us,  Au(z) - U AU (52)

with matrix U, that does not depend on z.
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In addition, even after fixing the gauge, the theory is still invariant with
respect to global color rotations for A, which in terms of the new fields A, (x)
and S(z) is equivalent to the transformations

S(z) > WS,  Aue) » Au(z). (53)

Thus, the color SU(2) invariance of the theory together with the gauge
invariance reduce to the set of global transformations (52) and (53), which
obviously form the group SU(2) x SU(2). The field S(x) transforms in accor-
dance with the representation (1/2,1/2), and A,(z) in accordance with the
representation (1,0).

On the other hand, the group of rotations of four-dimensional Euclidean
space is again, as is well-known, SU(2) x SU(2), and the generators of the
SU(2) subgroups have the form

1
az“auMV =
e e N

1 v=1,...,4
gzanaﬂvM,uu oy )

where M, = —iz,8/8z, +ix,8/8x, + spin part, are the operators of infinite-
simal rotations in the (u, ) plane, and 7,,, are the numerical symbols

Eopyy MV = 1,2,3,

—bav, =4
Napy — (55)
Sapy V=4,
0 p=v=4.

(The symbols 7y, differ from % by a change in the sign of 4 .) n and 7 are
called the 't Hooft symbols. The coordinate vector z,, transforms in accordance
with the representation (1/2,1/2). This is conveniently seen by considering

transformations of the matrix
x4 +iXT = iT @, (56)
where we have introduced the notation

Tff = (1, Fi). (57)
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For 7, we have

T:T; =6 + M™%, T;Tj = 8pp + ap T (57
It is not diflicult to find the law of transformation of the matrix (56),

fAd A are ) a . icnl a
et U +ivy I3 ""T_jm,ﬂ — (T /2}(37'::3”)6“‘02(1— /2) ,

where ¢f and 3 are the parameters of rotations. In other words, a rotation
of z,, is equivalent to the multiplication of unitary unimodular matrices both
from the left and the right.

The choice of & in the form §; = I'.’BH’J‘J/\/P distinguishes certain direc-
tions in the isotopic and coordinate spaces. However, under rotation by the
same angles in the spatial SU(2) x SU(2) group and in the SU(2) x SU(2) group
given by the transformations (52) and (53), the matrix S, obviously does not
change. In other words, if instead of /§ and I§ we call I¢ + T¢ and I¢ + T3,
the angular momentum operators, the introduced object has spin zero (here

I'2 are the operators of the infinitesimal transformations (52) and (53)).

Thus, we sce that the group SU(2) is distinguished on account of the di-
mension of the coordinate space. Further clarifying remarks as to why the
group SU(2) is singled out are presented in Sec. 8.5,

7.3. Value of the Action for Instanton Solutions

Although we do not yet have the explicit form of the instanton solution, we
can nevertheless calculate the value of the action for it. Indeed, for positive
values of the topological charge Q, the Euclidean action can be rewritten in
the form

1 1 H 1 .
d4 T30 (10 1 e a e a
5 f 4 TRy / 4 [4 “UG'LW 8( ad G”U)‘Z:l

8r2 1 N
= Q? + g fd4$(Gf‘” — wa}z . (58)

It is clear from this formula that in the class of functions with given positive
Q the minimum of S is attained for G2, = G%, and is equal to (872Q/g?).
We recall the functions with different @ cannot be related by a continuous
deformation if the action is to remain finite. Therefore, minimization of the
action can be carried out separately in each class of functions with the given
. The BPST instanton has Q = 1, and the action § = 8x2/42,
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The case of negative @ is obtained from (58) by the reflection z123 —
—x1,2,3, under which Gﬁwéuv — —G Gy and accordingly @ — —Q. Thus,
the minimum of the action for negative Q is (872/g)|Q|, and it is attained
when G}, = -G, .

As can be seen from this discussion, the fulfillment of the self-duality and
antiself-duality conditions G%, = £G¢, automatically leads to. satisfac_tion of
the equations of motion D,Gp, = 0. This can also be seen directly; indeed,
for a self-dual field, say, we have

~ 1
DGy, = D.U'G:'LU = 'Q‘Env'réD.uGiJ

1 a a
= aﬁpyqﬁ(D#G,ﬁ + D')'Ggpb + DﬁG,LL‘Y) =0 s

where we have used the Bianchi identity:

DGy + DsGuy + D.Gs, = 0.

8. Explicit Form of the BPST Instanton
8.1. Solution with Q=1

As discussed in the previous section, the asymptotic behavior of Aj, for this

solution is -0
: +
g?Az -2 1518,87
it (59)
i,
N2

where the matrices 'rf are defined in (57). We shall also use the symbols 7a,.

and f,y, defined by Egs. (55). These numerical coefficients are frequently
called the 't Hooft symbols, and some useful relations for g, are given in

Sec. 8.3.
The expression for the asymptotic behavior of Af, can be rewritten in terms

of the 't Hooft symbols as follows:

S =

e 2 Ty
Au 52 Gl gz
For an instanton with its center at the point z = 0, it is natural to assume
the same angular dependence of the field for all z, ie. to seek the solution in
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the form ( 2)
a 2 [z
AL(z) = PR (60)
where
flz*) — 1, f(z?) — const - 2%,
z2 00 7230

The last condition corresponds to the absence of a singularity at the origin.
A justification for the assumption (60) will be the construction of a self-dual
expression for Gf,,. From (60), we obtain for G%,

qu - _g{nﬂw/ f(lmQ f} + mﬂnavT$7$4 LoTapy Ly [f(l - f) - msz]} . (61)
Here the prime denotes differentiation with respect to z2. In deriving (61), we
have used the relation for ¢ x TouyTevs from the list of formulas at the end
in Sec. 8.3, Using the formula for e,,447qs, from the same list, we obtain for
G’ﬁu the expression

éfw = ‘3 {naﬂvf’ - %(%ﬂ?ﬂv'rmv = Ty Napy T} (1 — F) — mzf’]} .

The condition of self-duality, G, = éfw, requires the fulfillment of the equa-
tion f(1 — f) — 2%f’ = 0, which determines the function f:

72

f(2?) = 21 (62)
where p? is a constant of integration; p is called the instanton size or, the in-
stanton radius. The translational invariance guarantees obtaining the solution
with the center at an arbitrary point zg, for which it is necessary to replace
z by x — xg. We will discuss p, 2o and other collective coordinates in more
detail later. Note that if f — % is denoted as X and z? = €7 the equation for
f becomes identical to the first-order differential equation one obtains in the
double-well potential problem, X = 1 — X2

Summarizing, the final expression for the instanton, with its center at the

point zg and scale p, has the form

2 (w—iﬂg),,
Ae = Zp _\ET O
#T g o a0 + P
2 (63)
o 4 P

e e T
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Tt can now be verified that the action for the instanton is 872/g?, as was
shown in the general form. The antiinstanton is obtained by the substitution

Napy —* Fapw-

8.2. Singular Gauge. The 't Hooft Ansatz

It is frequently convenient to use the expression for Aj in the so-called singular
gauge, when the “bad” behavior of Af, is transferred from the point at infinity
to the center of the instanton. As was discussed in the previous section, such a
transfer can be realized by a gauge transformation with a matrix U(z) which
becomes identical with S(z) as  — co.1? We write down the formulas of the

gauge transformation,

,rfl _ Ta .
Q?Aﬁ = U+g—2—A;U +iU%8,U,

. i (64)
T e, =Utgl e U
g?G;w - g? B
and for an instanton with its center at zp take a matrix of the form
iz —
o @zl (64/)
(:12 - Io)2

Then for the potential Aﬁ and the field strength tensor @;u in the singular
gauge we ohtain

A® = 2 (z — zq) P’
R R R (CRED
7 8{(z —mo)ulz — o), 1 _ P
a _ _2 ~ 25, N — :

(65)

It is obvious that the quantities G, G2; are invariants of the gauge transfor-
mation (see, however, the last footnote). Note also the fact that (65) contains
the symbols sy, but not 7,,. This difference is due to the fact that in the

120fore precisely, this transformation should be called a quasigauge transformation, since
at the point where U/(z) has a singularity (and there must be such a singularity) this trans-
formation changes the gauge-invariant quantities, for example, G, G%,. To use such trans-
formations, it is necessary to consider a space with punctured singular points. This we shall
do, remembering that the physical quantitites are nonsingular at the singular points.
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singular gauge the topological charge (49) is saturated in the neighborhood of
z = zy and not at infinity.
The expression (65) for A% can be rewritten in the form

A L eard,In |1 4o F g
= —— n [
m gnapw v (w ” 3:0)2 . (66)
As was noted by 't Hooft, this expression can be generalized to a topological
charge @ greater than unity. Indeed, if
a 1 =
A =~ E?}aw@y InW{z), (67)

then for G, ~ G‘ﬁu we obtain [see the properties of the  symbols in Sec. 8.3]
2 1_ a,0,W
G~ G = S

The self-duality of G, requires fulfillment of the equation 8,8,W/W = 0.
The solution with topological charge ) has the form

n 2
= Pi
W_1+Z(m_m.)2’ (68)
i=1 B

i.e. it describes instantons with centers at the points z;. The effective scale of
an instanton with center at the point x; is obviously

2 ~1/2
f_ P
it )
ki (371: - 331')

It should be noted that the choice of A2 in the form (67) did not give the
most general solution with charge @, since all @ instantons have the same
orientation in the color space (for the construction of the general solution,

see Ref. [22]).
8.3. Relations for the n Symbols
We give a list of relations for the symbols 75, and oy defined by Eqgs. (55):

1
Tapy = Esﬂua,@"]’aaﬁ y

Napy = ~Tavp Nape by = 4Jab B
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Napraph = 3042 NogoTapy = 12,
NaprNarr = SuyOun — Sprbuy + Epua,
Euvrelaye = Oypllawr — Oqullag + SyrTapw s
TapwMopA = dabbur + EabeTlewA »
EabeMburTerr = OpyTlavr — SudWavy — SumMapr + OudTapy s
Napv T = 0, Tayu Ty = Tay Aoy -

To pass from the relations for 7,,, to those for fa,, it is necessary to make
the substitution

Napr — Napy Eppyd 7 —Epuvs -

8.4. Instanton in the Ag =0 Gauge

In Sec. 7.1 it was mentioned that the relation between the instanton topological
charge Q and the winding numbers of the zero-energy states in the distant past
and distant future, between which it interpolates,

Q:K’—K!

is most transparently seen in the Ag = 0 gauge. Now we can explicitly demon-
strate that this relation does indeed take place.
Equations (59) and {(62) imply that the instanton field

2
T .
= T 1,.5'18#Sfr

)

where A, = (g/2)7*A?% and the matrix S; is defined in Eq. {59). Let us pre-
surne that the time component of the gauge-transformed field vanishes identi-
cally,

UtA U +iUY8,U =0at p=0.

Substituting the expression for the instanton field we get the following equation
for the gauge matrix U transforming the BPST instanton to the Ag = 0 gauge,

2
’ 3’ S 4VTT
U+ m(SlSl )UQO,
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where

Xo

31S+ =1—.
1 $2

The solution of this equation is obvious,
T ixa
U{r,x) = [exp f_m (m)dr] U(r = —o0,x).

The instanton field in the Ag = 0 gauge takes the form

Ai(m,x) = z{ Ut (7, x)(S16; 87U (7, x) + Ut (7, x)&U (T, x)} .

_r
x? 4 p?
In the distant past and distant future

A = i(UTS)a(UTS) L.
Moreover, 51 — 1 at 7 —= Feco. As for U(7T = +00), we have

U(r = +00,x) = [exp/

—o0

oo ixo
3:2 + p2

)df] U(r = —00,x)

iTxXo
= lexp | ———
[ ( VX2 + 92)
The hedgehog matrix appears on the right-hand side. This obviously con-

cludes the proof that the winding numbers of the filed configurations between
which the instanton interpolates differ by unity.

8.5. Instanton Collective Coordinates

The instanton solution presented in Eq. (63) has the following collective coor-
dinates: the instanton size p (associated with dilatations); and four parameters
represented by the instanton center zp (associated with translations). The is-
sue of the collective coordinates is important, since each of them gives rise to
a zero mode. As we already know (Sec. 3), the latter play a special role in
calculating the instanton determinant, and, eventuaily, the instanton measure.
Thus, it is imperative to establish a complete set of the collective .coordinates.
In this section we will analyze the set of the collective coordinates for the SU(2)
instanton.
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The action of the pure Yang-Mills theory, Eq. (58), has no dimensional
parameters, and is conformally invariant at the classical level. Since the in-
stanton is the solution of the classical equations of motion {which are naturally
conformally invariant too), the set of the collective coordinates appearing in
the generic instanton solution is determined by the conformal group. Each
given instanton solution breaks (spontaneously) some of the invariances. The
conformal symmetry is restored only upon consideration of the family of the
solutions, as a whole. Those symmetry transformations that act on the in-
stanton solution nontrivially, generate another solution belonging to the same
family, with “shifted” values of the collective coordinates. Thus, each sym-
metry transformation from the conformal group, which does not leave the
instanton solution intact, requires a separate collective coordinate.

The conformal group in four dimensions includes 15 transformations (e.g.
Ref, [23]): four translations, six Lorentz rotations (in the Euclidean space it
is more appropriate to speak of six O(4) rotations}, four proper conformal
transformations and one dilatation. Moreover, the Yang-Mills action is gauge
invariant. We do not need to consider (small) gauge transformations of the in-
stanton, since they produce just the same solution in a different gauge. Global
rotations in the color space have to be considered, however. In the SU(2)
theory there are three global rotations. Thus, a priori one could expect the
generic instanton solution to depend on 18 collective coordinates. So far, we
have only seen five. Where are the remaining collective coordinates?

The proper conformal transformations can be represented as a combination
of translations and inversion. Under inversion

z 2
Ty — T, = a:—g’ Au(z) - 22 A, (2"}
Translations are already represented by the corresponding collective coordi-
nate, zp. Now, if we start from the original BPST instanton with the unit
radius and make the inversion, we will obviously get an antiinstanton in the

singular gauge,

_2_ Ty inv, g T
Gl I T g e a2 )

(cf. Egs. (63) and (65)). Thus, no new collective coordinates are associated
with the proper conformal transformations.

What remains to be discussed? We must consider six rotations of the
Euclidean space and three global color rotations. We will show that only
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three linear combinations of these nine generators act on the instanton solution
nontrivially, resulting in three extra collective coordinates. As a matter of
fact, the argument was already outlined in Sec. 7.2 where we explained why
the gauge group SU(2) is singled out. Here we rephrase the argument [24] in
a more explicit form by passing to a convenient spinorial formalism which we
will need later on anyway. This formalism becomes practically indispensable
in dealing with the chiral fermions.
For arbitrary vector V,, from the Euclidean space-time introduce Vg,

Vs = (0)aaVy, (p=1,...,4, 0,6 = 1,2),

where
o, =17, =1{0,i}.

(The matrices 7 were introduced in Eq. (57). Here we find it converient
to pass to a more concise notation.) The undotted and dotted indices from
the beginning of the Greek alphabet will denote the spinorial indices of the
SU(2)r. and SU(2)g subgroups of the Lorentz group in the Euclidean space
.(0(4) = SU(2)y x SU(2)r). A similar definition refers to the coordinate x,
itself, zo4 = —(0u)aa®,. The lowering and raising of the spinorial indices are
done by multiplying by antisymmetric tensor (the Levi-Civita tensor) from the
left,

X*=e""xp,  Xa=capx”?,
and the same for the dotted indices, where
gaﬁ = _£ﬁa, 812 = —E&19 = 1.

Then,

zl = -z —izg, 2l = —i 2—y 2 )

i 1 2, ¥y = 1&g + T3, :Ei—2224+.’133, Ty = T1 — o2,
In this notation the instanton field takes the form

né I
Aaﬁ g .')32 _i,_ 2

(65 +2387)

lwhere the color index of Aj, is also converted into two spinorial indices accord-
ing to the formula

AN = —(1%)7e5

?

=

and &% is the Levi-Civita tensor.
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For completeness we give here the expression for the gluon field strength
tensor,
75=£L(5755+6755) G?‘s’:(),

87 g (a7 A e T OBt D
where the transition from the standard vectorial to spinorial notation is done

in the following way
(Op)aa(w)geGur = €43Gap + €aplGyp -
Gog and G5 are self-dual and anti-self-dual parts of the gluon field strength

tensor,13 so that the equation GZ‘; = 0 is nothing but the condition of self-

duality of the instanton solution.

Now we are ready to discuss what happens with the instanton when one
does the Lorentz and/or color rotations. Note that if in the standard notation
the global color rotation acts on the four-potential A as A —» Mt AM, then

within our new convention
AP (MEY (M AT

Here M = exp{iw®r®/2), and w® are three parameters corresponding to a

global rotation in the 3U(2) color group.
Let the left-handed rotation act on the vector with the upper undotted

index as

$g - Lg;cg ,

where L is a matrix from SU(2),. Then for the vectors with the lower undotted
index
33&5 — (L+)g‘$')’.d .

Transformations from SU(2) g (they act on the dotted indices) rotate = and
Ain the same way. In other words, the form of the instanton solution does not
change at all. No collective coordinates corresponding to the SU(2) g rotations

emerge.

13From this expression for GZ‘; it is clear that the feld configuration under discussion is

a hedgehog in the SU{2); Lorentz subgroup. According to the nomenclature suggested !)y
't Hooft, it should be actually called antfinstanton. Indeed, passing to the standard vectorial

notation we get fa,.. rather than nape.
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Transformations from SU(2);, do change the form of the instanton solution,
and so do the global color rotations. Under the combined action of these two
transformations the instanton solution becomes

ne _ 1t
aff $2+p2

(M) (MOE(LY Ly + L LT o).

We see that if L = M the solution remains intact. This means that out of
six transformations (three global color rotations and three SU(2) rotations)
only three are independent, giving rise to three collective coordinates. We
can choose them to be associated either with the global color rotations (as
is usually assumed) or with the rotations from SU(2);. In the conventional
formalism these three collective coordinates are introduced as

Napv — Oabnb,uu y Fapw — Oabﬁb,uy

where the three-by-three matrix O, is defined as
Cup = % Te(MreMTrP).

The advantage of the spinorial formalism is obvious — there is no need to
introduce the 't Hooft symbols, and the hedgehog nature of instanton is most
transparent.

Summarizing, there are eight collective coordinates characterizing the
SU(2) instanton. Correspondingly, we will observe eight zero modes. For
higher gauge groups the number of the collective coordinates corresponding to
global color rotations increases. Altogether, in the SU (N) group the BPST
instanton has 4N collective coordinates. The counting was first carried out in
Ref. [25]. We will return to the discussion of the SU(N) instanton in Sec. 9.5.

8.6. Instantons in the Higgs Regime

Quantum chromodynamics is not the only gauge theory of practical impor-
tance. The Standard model of the electroweak interactions is a gauge theory
too. A drastic distinction in their dynamical behavior is due to the fact that the
non-Abelian gauge group is spontaneously broken in the standard model due to
the Higgs mechanism, the coupling constant is frozen at the values of momenta
of order of the W boson mass. It never becomes strong. Correspondingly, the
color confinement and other peculiar phenomena of QCD do not take place.
Since the nontrivial topology in the space of the gauge fields is not affected by
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the Higgs phenomenon, instantons (as the tunneling trajectories) exist in the
standard model too, leading to certain nonperturbative effects. The one which
was under the most intense scrutiny is the baryon number violations at high
energies. We will not dwell on this, applied, aspect of the instanton calculus,
referring the reader to Ref. {26] for a detailed review. Instead, we will focus
on theoretical issues. As a matter of fact, as we will see below, consideration
of instantons in the Higgs regime, even has certain advantages over the QCD
instantons. Since the coupling constant never becomes large the quasiclassical
approximation in the description of the tunneling phenomena, based on instan-
tons, is always justified, in clear distinction with QCD, where the instanton
contribution is dominated by large-size instantons, which are obviously outside
the scope of the applicability of quasiclassical methods.

Since we are not concerned with applications, we will limit ourselves to a
truncated standard model: SU(2) gauge group, with the minimal Higgs sector
— one complex Higgs doublet x%, i = 1,2. The U(1) subgroup, as well as
fermions, present in the standard model, are discarded.

If the Higgs field is in the fundamental representation of the color group,
there is no clear-cut distinction between the confinement phase and the Higgs
phase. As the vacuum expectation value (VEV) of the Higgs field x continu-
ously changes from large values to smaller ones, we continuously flow from the
weak coupling regime to the strong coupling one. The spectrum of all physical
states, and all other measurable quantities, change smoothly (27].

One can argue that the case is such in many different ways. Perhaps, the
most straightforward line of reasoning is as follows. Using the Higgs field in
the fundamental representation one can build gauge invariant interpolating op-
erators for all possible physical states. The K#llén-Lehmann spectral function
corresponding to these operators, which carries complete information on the
spectrum, depends smoothly on (x*x). When the latter parameter is large the
Higgs description is more convenient, when it is small it is more convenient to
think in terms of the bound states. There is no sharp boundary. We deal with
a single Higgs/confining phase [27].

It is convenient for our purposes to write the Lagrangian in the Higgs sector
in a slightly nonconventional form.

The model at hand has a global SU(2) symmetry, associated with the pos-
sibility of rotating the doublet x* into the conjugated doublet &/ x!. (This
global symmetry is responsible for the fact that all three W bosons are
degenerate if the U(1) interaction is switched off in the standard model.) The
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SU(2) symmetry of the x sector becomes explicit if we introduce a matrix field

1 _.2t
¥ X2 X ,
X xM
and identically rewrite the standard Higgs Lagrangian in terms of this matrix,
A1 2
(5 Te XX - nz)

4
where D, X = (8, —iA,)X. The complex doublet field x* develops a vacuum
expectation value 7 which can be varied continuously.
All physical states form representations of the global SU(2). Consider, for
instance, the SU(2) triplets produced from the vacuum by the operators

1
ALy = Tr D, X'D. X —

we = - i1yxt D, X7%)

iz 9 # ’
The lowest-lying states produced by these operators in the weak coupling
regime (i.e. when {x'x} > A?) coincide with the conventional W bosons of
the Higgs picture, up to a normalization constant. The mass of the W bosons
is ~ gn. On the other hand, if (x'x) < A? it is more appropriate to think of
the bound states of the x “quarks” forming vector mesons, triplet with respect
to the global SU(2) (¥p mesons”). Their mass is ~ A. The continuous evolu-
tion of 5 results in the continuous evolution of the mass of the corresponding
states. It is easy to check that the complete set of the gauge invariant oper-
ators that one can build in this model spans the whole Hilbert space of the
physical states,

a=1,2,3.

By the same token, one can treat, in a gauge-invariant manmer, elements
of the instanton calculus. We will not pursue this line of reasoning in detail,
referring the reader to the original publications (e.g. Ref. [24]). Instead, we
will dwell on two problems: calculation of the instanton action in the Higgs
regime, and the height of the barrier in Fig. 8.

Instanton action

Strictly speaking, if the scalar field develops a vacuum expectation value, the
only exact solution of the classical equation of motion is the zero-size instanton.
For each given value of p one can make the action of the tunneling trajectory
smaller by choosing a smaller value of p, so that 872/g? is achieved asymptot-
ically (see below). Since the nontrivial topology remains intact (one direction




256 ITEP Lectures on Particle Physics and Field Theory

in the space of fields forms a circle), for proper understanding of the tunneling
phenomena one cannot disregard the trajectories connecting the zero-energy
gauge copies (pre-vacua) in the Euclidean time, even though they are not ex-
act solutions any more. Following ’t Hooft [9], we will consider constrained
instantons — trajectories that minimize the action under the condition that
the size p is fixed. Our analysis will be somewhat heuristic. More rigorously
the construction is described, for example, in Ref. [28].

Technically the procedure can be summarized as follows. We first find
the solutions of the classical {Euclidean) equations of motion for the gauge
field ignoring the scalar field altogether. The solution is of course the familiar
instanton. Then we look for the solution of the equations of motion for the
x field in the given instanton background. This solution minimizes the Higgs
part of the action. A nonvanishing scalar field, in turn, induces a source term in
the equation for the gauge field, which is neglected. This source term will push
the instanton towards smaller sizes, in particular, by cutting off the tails of the
A, field at large distances (where they should become exponentially small).
The distance where this occurs is of order 1/(gn). If we are interested in
distances of order 1/ — and the instanton contributions are indeed saturated
at such distances — then we can neglect this effect and continue to disregard
the back reaction of the scalar field in considering instantons whose sizes are
fixed by hand.

To keep our analysis as simple as possible we will further assume that the
scalar self-coupling A —= 0. The only role of the scalar self-interaction then is
to provide the boundary condition at large distances,

% Te(X+X) o 2.

The equation of motion of the scalar field is completely determined by the
kinetic term in the Lagrangian,

D?*X =0,

If the instanton field is written as

_ i 5.8 S5+
A#_Wlaﬂl
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(for the antiinstanton $; ¢ Sf; the matrix $) is defined in Eq. (59)), it is
not difficult to check that the solution of the equation D?X = 0 takes the

form14
2 1/2
X =
n(vﬂ +92) St

This expression is properly normalized. Asymptotically the modulus of the
Higgs field approaches its value in the “empty” vacuum, while the “phase”
part of the scalar fleld has a hedgehog winding, At small z the VEV is
suppressed.

Using the fact that the Higgs field satisfies the equation of motion we readily
rewrite the contribution of the Higgs kinetic term in the action as

1
fd‘la:apﬁ Tr(X*D,X).
Moreover,

$2
3 (Sfaﬁsl) .

XtD X:n2p2_§gﬁ_+ 22 0+
“ @+ T @)

The last bracket, being an element of the algebra, is proportional to ¢® and,
hence, vanishes upon taking the color trace. Therefore, the trace is determined
entirely by the first term. Exploiting now the Gauss theorem and rewriting the
volume integral as that over the surface of the large sphere dS,, we arrive at

1
4 x
/d 0 Te(X*TD,X) = de#?)‘2p2 1 +“p2)2 =2m’n?p?.

Summarizing, the extra term in the action induced by a nonvanishing vac-
uum the expectation value of the Higgs field has the form

AS = 2n%n?p? .

This term is called the 't Hooft interaction, since 't Hooft was the first to
calculate it [9]. The 't Hooft interaction explicitly exhibits the feature we an-
ticipated earlier — the smaller the instanton size p the smaller is the instanton
action. It is clear that the instanton contribution to physical quantities is de-
termined by an integral over p (in Sec. 9 we will calculate the instanton density

M Exercise: Verify that the expression presented here is indeed a solution.
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which will give us the measure of integration). The exponential suppression
of the instanton density at large p due to the 't Hooft term, exp(—2m252p?),
guarantees that p ~ n~1, This, in turn, justifies the approximations made: the
back reaction of the scalar field on the gauge field becomes important at much
larger distances, z ~ (gn)~!.

In the SU(2) theory the *t Hooft interaction depends only on one collective
coordinate, p. In more complicated examples it may acquire dependences on
other collective coordinates. For instance, if we consider an SU(3) model with
one Higgs triplet (breaking SU(3) down to SU(2)) then the ’t Hooft interaction
will depend, roughly speaking, on the crientation of the instanton in the color
space relatively to the direction of the Higgs VEV. The 't Hooft term becomes
27202 p? cos?(a/2) where o is a certain angle. If the instanton under consid-
eration resides in the corner of SU(3) corresponding to the unbroken SU(2),
then & = #« and the 't Hooft term vanishes. Further details can be found in

Ref. [24].

8.7. The Height of the Barrier. Sphaleron

Let us return to the tunneling interpretation of instantons discussed in Sec. 5
and ask the question on what is the height of the barrier in Figs. 7 or 8, under
which the tunnelings described by the instanton trajectory take place. This
issue is not so simple as it might seem at first sight.

indeed, the QCD Lagrangian at the classical level contains no dimensional
parameters. Since the instantons are solutions of the classical equations of
motion {in the Euclidean space}, they do not carry dimensional constants other
than the instanton size which is a variable parameter. The height of the barrier
must have a dimension of mass. Therefore, the smaller the size p, the higher
the barrier the instanton with the given p “sees”, so that the classical action
stays constant, 87%/g2. This is possible, of course, due to the fact that the
space of fields is actually infinitely-dimensional. The one-dimensional plot
depicted in Fig. 8 is symbolic. Since the infrared limit of QCD is not tractable
quasiclassically it is impossible to determine the lowest possible height of the
barrier under which the system tunnels. All we can say is that it is of order
AQCD~

The situation drastically changes in the Higgs regime considered in the
previous section. The vacuum expectation value of the Higgs field provides
masses to all gauge bosons. If the vacuum expectation value is much larger
than Aqcp, the coupling constant always stays small, and the quasiclassical

ABC of Instantons 259

picture is fully applicable. Under the circumstances the question on what is
the minimal height of the barrier in Fig. 8 becomes amenable to quantitative
analysis. From this figure it is clear that when the system sits right on top
of the barrier, this is a solution of the static equations of motion, since the
position on top of the barrier is an equilibrium. It is also clear that the equi-
librium is unstable since it corresponds to a maximum of energy rather than a
minimum.

Thus, we will look for the solution of the static equations of motion of the
Yang-Mills Lagrangian in the Ay = 0 gauge. By inspecting the structure of
these equations it is easy to guess an Ansatz which untangles the color and
Lorentz indices,

1 zF
A% = Geob (), X = ?h(r),

where r = /X2 and f, h are profile functions to be determined from the
equations. The boundary conditions are quite obvious: at » — 0 both functions
f and A must tend to zero to avoid singularities; at 7 — oo the function & tends
to p while f(r) = —2/r. The latter condition is necessary to ensure that Ai(r)
becomes pure gauge at infinity. Then the energy density of the gauge field
vanishes at large r. Simultaneously, the energy density of the scalar field also
vanishes in spite of the winding of the field X. The overall energy of the
field configuration under consideration can be expected to be finite if both
conditions are met.

Technically, instead of solving the equations of motion it is more convenient
to write out the energy functional and minimize it with respect to f arnd h under
the given boundary conditions. Substituting our Ansatz in the Lagrangian
presented in the previous section we readily obtain

o0 1 2 2 1 1 f\°
H =4 2d ] g2 = 1 - opd 12 2f{ ~ 4
frfo r r{gg[f +T2f +rf +2fJ+h -+ 2h (r+2) }

The terms in the square brackets are from the gauge part (integration by
parts is carried out in one of the terms). The second term represents the Higgs
part. Since all terms in H are positive-definite it is clear that a minimum of
this functional exists. It can be found numerically; the corresponding profile
functions are depicted in Fig. 9.
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Af(r)

Fig. 9. The solutions for the sphaleron profile functions.

Before minimization it is convenient to rescale the fields and the variable r

to make them dimensionless,
f=gnF, h=nH, r=R(gm)".

In terms of the rescaled fields the energy functional takes the form

> 2 2 1
n 2 /2 2 3, -~
H:MEfo RdR{[F + @l gE Hr

1 F\?
12 2f 2 &
+ H*+2H (R+2) },

where the prime here denotes differentiation over R. The expression in the
braces contains no parameters, neither does the boundary conditions for the
dimensionless fields F, H (at R -+ oo the function H approaches unity and
the function ¥ tends to —2/R). The only parameter of the problem, /g, is an
overall factor. This obviously means that the energy of the solution obtained
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by minimizing the energy functional  is

E = Hnin = constant of order unity x g .
The numerical value of the constant is not very important for our illustrative
purposes. It can be found in the original papers, see e.g. Ref. [29].

"The static solution outlined above, corresponding to the top of the barrier,
is called sphaleron, from the Greek adjective sphaleros meaning unstable, ready
to fall. It was found in the SU(2) theory in Ref. [30] and rediscovered later in
the context of the standard model by Klinkhamer and Manton ([29); see also
Ref. [31]), who were the first to interpret the sphaleron energy as the height of
the barrier separating distinct pre-vacua of the Yang-Mills theory in the Higgs
regime. It is instructive to examine the position of the sphaleron on the plot of
Fig. 8 directly, by calculating the winding number of the corresponding gauge
field. Note that at large distances

(Adyeph — UBUY, U= 5}
The matrix 7 takes different values as we approach infinity from different
directions. Thus, the condition of compactification which we impose on the
vacuum gauge field, does not hold for the sphaleron. Correspondingly, the
winding number K[(A;);pn] need not be an integer. A direct calculation (left
as an exercise for the reader) readily yields

,C[(Ai)sph] = % ’

demonstrating that the sphaleron sits right in the middle between two classical
minima with X = 0 and £ = 1.

To give a well-defined quantitative meaning to the height of the barrier
in the absence of the Higgs field we must regularize the Yang-Mills theory
in the infrared domain. One of the possible regularizations was suggested in
Ref. [32] where the Yang-Mills fields were put on a three-dimensional sphere
of a finite radius, instead of the flat space of conventional QCD. The radius
of the sphere plays essentially the same role as {gm)~! in the Higgs picture. If
this radius is small, the quasiclassical consideration becomes closed, and one
naturally discovers analogs of the sphaleron solution. The advantage of this
regularization over the Higgs field regularization is the existence of analytic
expressions. Both, the sphaleron field configuration and its energy can be
found analytically [32]. In particular, the sphaleron energy turns out to be
37%/¢* times the inverse radius of the sphere.
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9. Calculation of the Pre-Exponential Factor
for the BPST Instanton

9.1. Ezpansion Near a Saddle Point. Choice of the

Gauge and Regularization

As in the quantum-mechanical example, to calculate the pre-exponential factor
in the instanton contribution to the vacuum-vacuum transition, it is necessary
to represent the field A} in the form

e _ pa(ins) a
AR =A%) 4 g2 (69)
and expand the action S(A) with respect to the deviation af, from the instanton

field AZ(),
1 ins
S(4) = So+ 5 f d*zal L30 (A™)al)

82 1 4, a[n2,a Doa® +2 achb c (70)

= F 7 d*xza}[D%af, — D,Dyal +2ge*°G), 07,
where the instanton field is substituted in D, and G,,. As in the one-
dimensional case, the integration with respect to the deviations a, reduces
to the calculation of the determinant of the operator Lf}l’, There are however

two important differences from the one-dimensional case:

The operator L is degenerate due to the gauge invariance. Indeed, fields af, of
the form aj; = (D, A)* with arbitrary function A®(z} make the quadratic form
(70) vanish. In order to have the possibility of working with a degenerate form
of this kind, it is necessary to fix the gauge. This can be done conveniently by
adding to the action the term

1 1 a a
AS = §[d4$(Duaﬁ)2 - §fd4xa“(AL)“?}ag, (1)

which lifts the degeneracy. To avoid changing the content of the theory, we
must, as is well-known, simultaneously add the Faddeev-Popov ghosts:

ASg = — f d4zd° 23" = f dede Lo, (72)

where ®° is a complex anticommuting field. As a result, the instanton contri-
bution can be written in the form

{0107 )ins = [det(L + AL))Y%(det Ly )e™ 5, (73)
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where |07} is the vacuum after time T, |07) = e~ H#T|0), H is the Hamiltonian,
So = 87%/g%, (L + AL)2 is the operator appearing in the quadratic form of
the fields af}, and Lgy, acts on the ghost fields. The determinant of Ligh occurs
in a positive power, since $%, 9% are anticommuting fields.

A second difference from the one-dimensional case is the presence in the
theory of ultraviolet divergences. By virtue of the renormalizability, all the
divergences must be eliminated by a renormalization of the coupling constant,
but it is first necessary to regularize the expressions under consideration. The
regularization can be done as follows. Instead of the determinant of the op-
erator L + AL we consider the ratio det(L + AL)/det(L + AL + M?), where
the introduction of the cut-off parameter M can be interpreted as the addition
to the theory of a Pauli-Villars vector field with mass M. The determinant of
Len is regularized similarly. Thus, it is necessary to calculate

~-1/2
(Ofogyes [ _deMELAL) 17F_ detly s,
ins det(L + A + M?3) det(Lgn + M?)

(74)

or, more precisely, the ratio of (OIOT)&‘EE to the corresponding perturbative

quantity {0!07)p.tn, which differs in having A, = 0 substituted instead of the
instanton field. For A7, = 0, it is obvious that Sy = 0, while for the instanton
Sy = 8% /g3, where the subscript in the coupling constant gy emphasizes that
this is the bare coupling constant normalized at the cut-off parameter M
g0 = g(M).

We shall not go into a detailed exposition of 't Hooft’s calculations for
{0}07) /(0|07 )p.cn but obtain the result up to a numerical factor. The study of
zero modes plays the main part in obtaining the result.

9.2. Zero Modes

As shown in the one-dimensional example, each zero mode leads in (det(L +
AL)|™Y2 to a factor proportional to /S5 and an integral with respect to a
corresponding collective coordinate. What are the collective coordinates in the
case of the BPST instanton in the group SU(2)?

The issue has been discussed in Sec. 8.5. F irst, there are the four coordi-
nates of the center zg, then the scale p, and, finally, the three Eulerian angles
8,,1, which specify the orientation of the instanton in the color space. The
spatial rotations need not be counted, since they are equivalent to isorotations
(see Sec. 8.5).
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As a result of the regularization, [det(L+AL)]~'/2 is multiplied by [det(L+
AL+M?)]1/2 e each zero mode gives rise to a factor M. Thus, from all {since
we have listed all collective coordinates) zero modes, there arises in (0{07)}%
the factor

/ d4zodpsin 6 df de dypMB(/So)%p° . (75)

The factor p* arises from the Jacobian of the transition to integration over
9, 4,1 and is recovered on the basis of dimensional considerations.
Using (75) we rewrite (0|07} % /(0|07),.4n in the form

Reg 4 ay 4 2
(00}t _ Constj dzdp (?”T) exp ( B 8mMp+ @1) . (76)
(0]07) p.4n o\ g g

where exp ®; denotes the contribution of the nonzero modes.

9.3. Nonzero Modes. Effective Coupling Constant

The quantity ®; depends on the dimensionless parameter Mp, and in the limit
Mp 3 1 can be readily found by means of ordinary perturbation theory. In-
deed, calculation of the pre-exponential factor by retaining the terms quadratic
in the deviation from the external field corresponds to the calculation of the
one-Joop corrections in perturbation theory. We are here referring to diagrams
of the form

I‘x‘__*\\

4 -~ !

oy + O Fi T -

where the cross denotes vertices of the interaction with the external field, and
the broken lines correspond to the propagators of the fields af (plus similar
loops with the ghosts ©¢, $%); the external field has the form A",

It is clear that complete calculation of the contribution of the zero modes
requires summation of a complete chain of diagrams — the zero modes do
not appear in any fnite order. A manifestation of this nonanalyticity is the
presence of the term In(872/g#) in In(0|07)ins. It is also clear that there is no
nonanalyticity of this kind for the nonzero modes.

In the limit in which we are interested, Mp > 1, only the first of the
diagrams {77} is important in the calculation, since all the following diagrams
are convergent and do not give a dependence on the cut-off parameter M (they
change the constant in (76)). Moreover, in the second order in the external
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field it can be seen that the contribution of the nonzero modes is given by an
unsubtracted dispersion relation for the polarization operator Hﬁf’,

The imaginary part of Hf‘f’, is obtained by cutting the first diagram (77)
and is well defined. In its calculation, it is necessary to take into account
only quanta with the spatial transverse polarization states; the unphysical
polarizations and ghosts are not necessary. Omitting the details of this simple
calculation, we give the result for Im1l,,,:

e, 2
ab _ 7 . _ cab 2 g
ImlIIE; = x\m == 5% (g k? - k“k")IGw .

[N )

Writing down the unsubtracted dispersion representation for HLI,) (the part of
the polarization operator associated with the nonzero modes), we obtain

1 ds 2 g%
) — geblg g2 _ V_f%__g_
v (gu kuk )71- s—k? 316w
2 g* M2
__ rab 2 g
= §*(guuk® — k“ky)§w15W2 In 2 (78)

where we cut off the integration over s at M 2, since the regularization involves
a subtraction of an analogous contribution with the Pauli-Villars regulators of
mass M.

The result (78) for the contribution of the nonzero modes means that the
action for the external field acquires from these quantum corrections the effec-
tive addition

2
AgMink g%ﬁ In M?p? f dz [—%(GZU)ZJ : (79)
where we use the notation of pseudo-Euclidean space and have replaced 1/
(—k?%) by the square p? of the characteristic scale of the field (strictly speak-
ing, we ought to write a differential operator, but for the calculation of the
coeflicient of In Mp this is not important}. Passing to the Euclidean action
and substituting the instanton G4, we obtain the result for ®;:

<I)1:—§lnM,o. (80)
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Thus, allowance for the zero and nonzero modes has the consequence that
87m2/g2 in the argument of the exponential (76) is replaced by the effective
coupling constant 8m2/g?%(p):

82 82 2 8w2 922
——=——8ImMp+ -InMp=— — ZInMp. 81
2 4 3 g 3 (81)

Of course, this result is a direct consequence of the renormalizability, and
we have wasted time on its derivation only to emphasize the very beautiful
explanation of the antiscreening of the charge in the non-Abelian theory which
arises when the zero modes are considered. In the instanton calculation the
antiscreening is entirely due to zero modes.

Indeed, both the sign and the magnitude of the coefficient of the “anti-
screening” logarithm in Eq. (76), 8 In Mp, are obvious consequences of the
consideration above — the coefficient is simply the number of the zero modes.

In the framework of the perturbative calculations, the “antiscreening” re-
sult can be most clearly explained in the framework of the ghost-free Coulomb
gauge, which was used in calculations by Khriplovich [33] as early as 1969
(see also Ref. [34]). Besides the “dispersion” part, the calculation of which we
have discussed above, the polarization operator in this gauge contains a con-
tribution that does not have imaginary part and arises when one of the virtual
quanta has the spatial transverse polarization and the second is a Coulomb
quantum. The opposite signs of the “nondispersion” and “dispersion” parts of
I1,.. correspond to the opposite signs of interactions due to the exchange of the
Coulomb quantum and the transverse quantum (electric forces repel charges
of the same sign, while magnetic forces attract currents of the same type). A
more detailed pedagogical discussion of the issue can be found in Ref. [35].

The calculation of the “nondispersion” part in the Coulomb gauge requires
care, since it is necessary to use the noncovariant Hamiltonian formalism, and
the coefficient of the logarithm is not, of course, known @ priori. As we have
seen, none of these problems arise in the determination of the contribution of
the zero modes. With this we conclude our panegyric to the zero modes.

9.4. Two-Loop Approxzimalion

The above calculations led to the replacement of the bare coupling constant
go in the classical action by the effective constant g{p). However, the bare
constant still remains in the factor (872/g3)? [see (76)], though it is clear that,
because of the renormalizability, it should not occur in the result. The reason
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.for' this is that the accuracy obtained by using the one-loop approximation
1s inadequate to distinguish the factor (872/98)* from [872/g2(p))%, and we
require a two-loop calculation. ,

From the two-loop calculation we actually only need the expression for the

effective coupling constant; such an expression as known from the perturbation
theory [36],

8n? 82

(@) 9%(po)

11 po 17 11, ¢?
+N|zmf 1L ,r97(m)  po
[3 np +111n(1+ 3N 42 In; , (82)

where we have given the result for the group SU(N) (without the contribu-

tion of fermions). The unrenormalized constant is go = glpo = 1/M). The

instanton contribution to the vacuum-vacuum transition for the group SU(2)
has the form

(0l07)es a2t
007)pam ~ " [g;(rp)J e/ + 0% (p), (83)

where g%(p) is given by the expression (82) with N = 2. For the factor
[872/9%(p)]%, we can restrict ourselves to the one-loop expression for g%(p)
the difference being of the order of the ignored terms which give relative cor—,
.I'ections of order ¢*(p). Note that the complete two-loop calculation of the
instanton contribution would determine these corrections.

The proof of the correctness of (83} is based on the renormalizability of
the .theory and the method of effective Lagrangians. In the functional integral
-we integrate in the spirit of Wilson over fields of small scale (less than p ),
L.e. over configurations corresponding to instantons with small p < p,.. Asce:
result, we obtain an effective Lagrangian of the fields with scales greater than
pe. In this Lagrangian, the small-scale fluctuations are taken into account in
the coefficients of the expansion with respect to the operators.

The calculation of the contribution of the instantons to the vacuum-vacuum
t.ransition is equivalent to the determination of their contribution to the coeffi-
cient of the unit operator. The calculation of the coefficients of other operators
will be considered in Sec, 10. A specific feature of the unit operator is the fact
that its matrix elements are independent of the normalization point; ie. it
has the vanishing anomalous dimension. Therefore, the coefficient of’ it ;3)(-
pressed in terms of g(p), cannot contain pe (for operators with a nonvanis’hing
anomalous dimension the factor [g2(p,)/ 9*(p))° arises),
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: 2

Now, it only remains to express g*(p) in terms of g°(po) by means Of;he

renormalization-group equations; the argument above proves that the retention
of the two-loop correction in (82) is fully legitimate,

9.5. Density of Instantons (The Instanton Measure)
in the Group SU(N)

How does the number of zero modes change on the transition tol the g;})(uz];
SU(N)? We have already said that the in.stanton field uses on g E:. )
subgroup of the complete group. Suppose this subgr(?up occupies the ﬁop v
hand corner in the N x N matrix of generators. It is clear that t e five ze

modes associated with shifts and dilatations remain the same as 1111l the ;girm;i
SU(2), and only the modes associated with group rotations are ¢ ani:m;s i
SU(2) there were three, and in SU{N) they correspond to thr.ee: gener sin
a 2 X 2 matrix at the top left (Fig. 10). Those of the remémlng g(‘anerla czi

that occur in the (N — 2) x (N — 2) matrix at the bottom rlgh’? obv101f15 );h )
not rotate the instanton field. Thus, to the three SU(2) rotations a 1(1; ei;
4(N — 2) unitary rotations are added. The total number of zero mon ;j :
5+ 3+ 4(N — 2) = 4N. Of course, this numbt-ar 4N exactly corresp20 )
the coefficient of the “antiscreening” logarithm in the formu'la for 8 /};c,' hp'.
Finally, we write down an expression for the instanton density d(p), which is

defined as [ollows: Reg .
(0|0T)ins — f d wsdpd(p) R (84)
(OlOT)p.th P

I~
-———%
=
~
N

o
]

=

Y

Fig. 10. Counting generators of group rotations in SU(N).

ABC of Instantons 269

Since the SU(N) group space is finite it is assumed that the integration over the
collective coordinates associated with the instanton orientation in the SU(N)
group is carried out. The function d(p) is equal to

d(p) = ¢y 8m? 2N8—131r2/92(p)]ﬁ02N (85)
(VTN = 2)1 | 255) /

where ¢%(p) is expressed in terms of 9 = 9%(po = 1/M) by formula {82),
and the constants C| and Cy can be found by a certain modification (37] of
the 't Hooft’s calculations [9]. Concretely, it is necessary to take into account
additional 4(N - 2) vector fields with the above quantum numbers in the
contribution of both the zero and nonzero modes. In addition, we need the
embedding volume of SU(2) in SU(NY}; the factor [(N — 1)(N — 2)1]71 is associ-
ated with it. This part of the modification proved to be the most complicated
(see Ref. [37]). The result for ¢y and Cy has the form

2¢5/6
o jr? = 0.466,

02:Elnz_E+1(ln2ﬂ+'y)+—2—§:1n—s=+l679 (86)
3 36 3 w2 = 52 S

Note that the constant (3 depends on the method of regularization, which
actually provides the definition of the bare constant, Equation (86) refers to
the Pauli-Villars regularization. Instead of the Pauli-Villars regularization (PV
scheme), the so-called dimensional regularization is frequently used. Instead
of logarithms of the cut-off parameter, poles with respect to the dimension of
space arise in this method, In M — 1/(4 — D). Use of the minima) subtraction

scheme [38] (MS) for determining the coupling constant leads to an expression
of the form (85) with the substitution

9(p) = gms(p)  Cy - Cous,
5 11
Cams = Cy - 25 — g (ndr —v) = Cy —3.721. (87)

The numerical coefficient in d(p) for the MS scheme is 372N times greater
than in the PV scheme, which for SU(3) gives the factor ~ 7. 10*.

Of course, the relations between the observable amplitudes do not depend

on the definition of g2 — the same conversion constants associated with the
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change of regularization occur, for example, in the corrections in g2 to the
cross-section of ete~ annihilation into hadrons (though there, it is true, the
dependence on them is not exponential). We note in this connection that in the
perturbation theory the so-called modified minimal subtraction (MS) scheme
has proved helpful, since in it, too large coefficients of the expansion in g*
do not arise [39]. The difference between the MS scheme and the MS scheme
reduces to \
2
b’ _ 8T %N(lntlﬂ—'y),

5
02H§=Cg—%%1.54.

We give finally the explicit form of the dependence on p for the function
d(p) (in the PV scheme)

PE= TN N = 2)1 \ o 37 8 o
N
sr? 1” —[8=%/g%{po)]—1.6TON 80
——| e : (89)
9*(po)

10. Instantons in the QCD Vacuum
10.1. Instantons in the Slowly Varying Background Fields

The quasiclassical methods that have been developed apply to the study of
nenperturbative fluctuations of a small scale, among which the instantons are
dominant.

In this subsection we take into account the influence on the small-scale
instantons of the fields due to the characteristic long-wavelength fluctuations
in the QCD vacuum [40].

Since we distinguish fields of two types, namely, the fields of small-scale
instantons and the fields of the large-sized vacuum fluctuations, it is convenient
to introduce an effective Lagrangian. In it, as usual, the contribution of the
rapidly varying fields is included in the coeflicients of the various operators
that act in the space of the slowly varying fields.

Thus, the effect of a selected instanton with scale p and center at o reduces
to the following extra term in the effective Lagrangian of the long-wavelength
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fluctuations;
dp
Alfag) = &S Culp)On(a)
n

where C7,(p) are numerical coefficients and O, (zq) are local operators con-
structed from the gluon fields (we consider pure gluodynamics; the changes
introduced by fermions are discussed in the following section). ,
. The probability of finding the instanton under consideration in the phys-
ical vacuum is given by averaging AL over this state. On the other hand
to find the coefficients C,,, it is convenient to consider the matrix element;
of AL between the perturbation-theory states (with different number of free
gluons with momenta g < 1/p). These matrix elements can be calculated by
quasiclassical methods.

Concretely, we consider the instanton contribution to the vacuum —
gluons transition and apply to it the reduction formula,

(ngons 8510) = OIT ] [ daneegpaiazseolo), (o0

where ¢; and épr are the four-momentum and the polarization of the kth
gluon, and A% (k) is the operator of the gluon field. For n = 0, i.e. for the
vacuum-vacuum transition, the right-hand side of (90) was already calculated
in Sec. 9 and is equal to dpp~3d(p); the left-hand side is obviously equal to the
coeflicient of the unit operator: Crdp/p®.

For n # 0, the prescription of the quasiclassical calculation of the expression
(90) reduces to

(a) the transition to the Euclidean space (see the equations in Sec. 6);

. (b) replacement of the Euclidean .flf: (z} by the instanton field A%(z i Zo)
given by the formula (65). The singular gauge is used because the redu‘::tion for-
mula (90) is valid only for rapidly decreasing fields A® (z). For the nonsingular
gauge, the inverse propagator ¢? is replaced by a morz complicated expression,;

(¢) multiplication by the {0]07)ins transition amplitude, which is equal to’
dpp~3d(p). Thus, for the matrix element (90) we obtain

{n gl dp -t -

gluons |AL(z)|0) = p—sd(p)e =l H

k=1

X [[dazke"q"x“(—qff)sﬁtzﬁ(%)J o (91)

where all the quantities on the right-hand side are Euclidean.
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The Fourier transform of the instanton solution, which we want in the limit

gp — 0, is readily found:
—igqx 2\ Aa dmi _ 2
dze " (—g*) AL (z) = —gﬂnawq,,p . (92)
After this, it is easy to recover the complete operator form of AL:

d 272 L o
Mm—ﬁwm%—;ﬁﬁﬁﬂﬂ,

=M

famn, £=m, v=n; mn=123,
Napv = (93)

ifgdn, H=0, V=1, n=12,3,

where G, (x) is the operator of the large-scale gluon field. The factorials which
occur in the expansion of the exponential cancel against the combinatorial
coefficients when the matrix element (91) is taken.

The expression (93) for the interaction of an instanton with an external field
was obtained for the first time by Callan, Dashen and Gross [11] by a different
and more complicated method. An important point is that we, in contrast to
them, have not fixed the external G%, () “by hand” but have related it to the
field of the large-scale fluctuations.

This is achieved by averaging the Lagrangian (93) over the physical vacuum.
The term linear in G, obviously vanishes as a result of such averaging, and
the first nonvanishing correction to the effective density of the instantons is

proportional to G*:

d
MMM=§mm

""'3!04 (1 -} 6
0iGs, G0 + 0%, (94)

dp
= p—sd(p) 1+ _(NZ ~Tas

where in the averaging we used the relation

ﬂﬂl

a r 1
{01G}, G |0) = NToT l—z‘(guwgwf — G Gup ) (O|GE3Go510) . (95)

Note that the coupling constant o, and the operator (G%,)* which occur
here are normalized at the point p. A quantity that does not depend on the

renormalization point (to accuracy ay(p)) is the product G}, G, .
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To obtain a quantitative estimate of the correction, it is necessary to know
the mean square of the intensity of the gluon field in the physical vacuum, If
we accept a “canonic” [1] value of the gluon condensate,

X o
(01— G}, G110) % 0.012 GeV?, (96)

;::; for the group SU(3), the relative correction to d(p) can be written in the
7o
8a3(p)

It reaches unity at a value of p equal to

Qs vy a
(Ol_G.UVG#v'O) . 97
m

i
115 GeV'’

Tf for o, we take a,(p) = 27/91n(1/Ap) with A = 100 MeV. For £ = Porit, the
interaction of the instanton with the vacuum fields of the other ﬂuctilr:t,ions
becomes 100% important. This p; is rather small.

We conclude this subsection by giving a formula that takes into account
the higher powers of G4, in the effective instanton density. This formula is
based o'n the hypothesis of dominance of the vacuum intermediate state. which
makes it possible to reduce (0](G?)"|0) to ((0|G?J0))™. This approxima’,tion is
analogous to the one used in the many-body theory and for some four-quark
operators for which it can be verified to have an accuracy of the order of a few
percent.

The factorization leads to the relation

Perit &

(98)

on? . A\ ot k
MEFﬁﬂﬁ%)M=@Fﬂ%%¢W@$%fMJ’

by means of which we obtain for the effective instanton density the result

mip

(N2 - 1)ad(p)

4

o) = d(p)exp | N 0 B

W thh can be I pl‘ nted as the repl 0
131 nt n X () d Of
/ ( ) eprese aceme 1 the e pI eSs510n f r ( )

2 A 7r3p4 o
a(p) "~ alp) [1 - are ?(Gﬁv)zl‘))J . (100)
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Using for d(p) the expression (99), we can advance in p to p > Puit
However, when the interaction with the vacuum fields changes the classical
action strongly, i.e. when (100) vanishes, the quasiclassical methods cannot
be used. This limit under the same assumptions about o, and {0|G?|0) is
p < 1/500 MeV.

10.2. Instanton—Antiinstanton I nteractions

In the first part of the lecture devoted to the quantum-mechanical problem
of the double well potential it was explained that the instanton contribution
to the vacuum energy is determined by a chain of instantons. The chain was
treated as an ensemble of well-separated instantons unaffected by the presence
of others. Similar approximation in QCD is called the dilute instanton gas [11].
The instanton gas is not a good approximation in QCD, even at the qualitative
level. Tn the absence of the instanton interactions, there is no way one can
make the instantons gas self-consistent. Thus, the situation differs drastically
from that we encountered in the quantum-mechanical example discussed in
the beginning of this lecture. The basic difference is due to the fact that an
intrinsic mass scale controlling the gas “diluteness” appears already at the
classical level in the quantum-mechanical problem, while QCD at the classical
level has no dimensional parameters. The only mass scale, Aqcp, emerges
as a result of the dimensional transmutation, at the quantum level. It is not
surprising then, that the gas model, with no intrinsic mass scale, turns out to
be inadequate.

One could try to amend the instanton gas model, by including interactions
of instantons between each other. If a classical (or semiclassical) interaction of
instantons becomes important in QCD at such values of p where 872/g%(p) is
still a large parameter, an instanton-based picture of the QCD vacuum could
survive. A crude picture can then be formulated as follows. Instantons and
antiinstantons of a relatively small size form an interacting liquid. ‘The “atoms”
of this liquid are instantons and antiinstantons. The “atoms” act as potential
wells for the light quark propagating in this “medium” [41] (Fig. 11).

This heuristic picture serves as a basis for various versions of the instanton
liquid model [41]. We will not go into details of this model for two reasons:
(i) it is too closely related to the applications of the instanton calculus while
in this lecture we are mostly preoccupied with the basics of the formalism per
se; (ii) exhaustive reviews exist in the literature (e.g. Ref. [4]). Instead, we
will dwell on a general element from which each model of this type begins. If
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F}:id ldl bA schematic picture of the instanton liquid model of the QCD vacuum. The
shaded objects are antiinstantons. The lines connecting in ii .

: . . stantons £

interactions and quark exchanges. ¢ (aatiinstantons) dencte

one deals with more than one instanton the first issue to be addressed is the
question of the instanton-antiinstanton (I-A) interactions at large separations.
We speak about the instanton-antiinstanton interaction since two instantons
?r two antiinstantons, being the exact solution of the duality equations, do no’;
interact classically — the action of two pseudoparticles is twice the a’ction of
one,

The master formula for the instanton of size p centered at = “living” in
an ext'ernal background field GY,, (%), we have obtained above, will allow us
to easily find the leading term in the I-A interaction at large distances, the
so-called dipole-dipole interaction. ,

No assumption is made in Eq. (93) as to the nature of the background field.
I¥1 particular, this field can be caused by a distant antiinstanton of a larger
size. If we substitute in Eq. (93) the value of the gluon field strength tensor
induced by the antiinstanton centered at y we will get a formula describing
Fhe instanton—antiinstanton (I-A) interaction at a large separation. Since the
instantons belong to the Euclidean space, strictly speaking we need a Euclidean

a}rllal;)g of Eq. (93). It is quite obvious that the corresponding expression takes
the form

E ( 211-2!02 ab -
o{Zo) ~exp| — TO nbw(}'ﬁu(mo)> + h.c., (101}

where 0°? is a global color rotation matrix reflecting the relative orientations
-of the I-A pair in the color space, (it was not explicitly written in Eq. (93) since
it was irrelevant for Sec. 10.1), g is the coordinate of the instanton center, the
§ubscript p reminds us of its radius, and g, is the 't Hooft symbol. G¢ ,(mg)
is the operator of the gluon field strength tensor. In principle, beyogs the
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leading approximation, the exponent in Eq. (101} will contain other operators,
say with derivatives DG, or with two or more G’s, along with a series in g.

In this way one can determine the [-A interaction as a systematic double
expansion, in the ratio p/R and in the coupling constant, where R is the
distance between instanton and antiinstanton. Thus, the leading dipole-dipole
term is obtained from Eq. (101) by substituting the operator G, (zq) by the
antiinstanton field at zg. The antiinstanton centered at yo should be taken
in the singular gauge, see Eq. (65) (where 7 must be substituted by 5). It is
assumed that R = |zg — yo| > p, of course.

This exercise is pretty straightforward. For pedagogical reasons we find it
more instructive to present a somewhat different (and less known) derivation
of the I-A interaction that does not use the language of the classical fields at
all. It operates with amplitudes of particle emission and allows us to connect
the classical problem of the I-A interaction energy with the quantum problem
of the instanton-induced cross-sections.

To illustrate how it works we will do the calculation of the I-A interaction
in the leading (dipole) approximation. Relevant graphs are depicted in Fig. 12.
The instanton with size p; is placed at » and the antiinstanton with size pg at
the origin; |z| 3> p1,2 so that the whole approach makes sense.

Figure 12{a) is the basic element of the calculation. We expand the expo-
nent in Eq. (101) and a similar one for the antiinstanton, keep the linear in
G4, terms and contract G(z}) and G(0) to get

4m? b a
(?ﬂ%pg)o,rbnbyvoidndaﬂ(G#u(ﬁ)Gggﬁ(O)) )
where (G2, (z)G¢5(0)) is the free Green function of the gauge field. Moreover,
in the Green function (A,(z)A.,(0)) we can only retain the g, part, since

(a) One-gluon exchange {b) Multigluon exchange

Fig. 12. The I-A interaction from the instanton-induced effective Lagrangian (101). The
instanton (e) is at the point = while the antiinstanton (o) is at the origin. The vertices in
diagrams (a) and (b) are generated by expanding the exponent in Eq. (101) and keeping
only the linear part in each of the G, operators appearing in the expansion.
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the part z,z, drops out,

. vge qon - 20

(G,uu(x)aaﬁ(o)) = ?(guamuwﬁ T GupT o — Goplua — g#awiﬁ)xia ey
(102)

where the dots denote the terms which are not contributed due to the fact
NaprTope = 0.

Nov;r, it is not difficult to see that Fig. 12(b) just exponentiate the result
1/ (n') from the expansion of the effective Lagrangians is supplemented by n!
coming from combinatorics] and we finally get for the I-A amplitude

8772 3271'2 2 i
R TE T pm%namﬁb,\yﬂ‘“’%ﬁ] : (103)

where Q% is the matrix of the relative orientation of the pseudoparticles, %0 =
0305, ’

The =% term above is the dipole-dipole interaction sought for [42]. The
procedure can be continued further [43]. The very same term in Eq. (101)
generates, through Fig. 13, a part « ¢g~2R~6 (the graph 13(a) is due to the
quadratic term in G'§,, in one of the vertices). If the Higgs field is included, it
generates the terms of order v?R~%, v?1~1, etc. through the graphs depict,ed
in Fig. 14. The last term which has been explicitly computed is of order
g~ *R~%In R corresponding to Fig. 15.

A

IFig. 13. Higher order terms in p/R in the I-A interaction due to the quantum corrections
:thhe gItJon exchanges. The R“ﬁ term is generated by the same effective Lagrangian (101},
( )e ve:lt.lces att?gl;ed to the instanton {e) in diagrams (a) and (b) and to the antiinstanton
o) on diagram are generated by expanding the exponent in Eq. (101 i

quadratic in A, part in G, ’ @ (10D and kecping the

A [

{a) Mass term of the gauge boson (b) Higgs exchange

Fig. 14. Higher order terms in the I-A interaction due to the Higgs field. The crosses denote
the vacuum expectation value of the Higgs field.
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Fig. 15. An example of the two-loop diagram contributing to the I-A interaction at the level
9" 2R %InR.

11. Constrained Instantons and the Valley Method

In the several problems discussed above we dealt with the field configurations
that are not the exact solution of the classical equations of motion. The in-
stanton in the theories with the spontaneously broken gauge symmetry (the
Higgs regime) is an important exainple. Another example is the ensemble of
the I-A “atoms”: each given pseudoparticle in the ensemble is affected by the
presence of others, and it is quite obvious that the topologically neutral gas
cannot, strictly speaking, correspond to a minimum of the action and, hence,
is not the exact solution. In other words the action of n pseudoparticles in the
I-A ensemble S,, # (872n/g%); instead
2
S = T n S (104)
g
where generically the interaction “energy” Sin. > 0. {From now on we will
use the terminology of a static problem in four-dimensional space; the action
will be reinterpreted as the energy, and the word “pseudoparticle® becomes
appropriate.)

The small-size instanton p < my', is a legitimate contribution in the
theory with the spontaneousty broken gauge symmetry. Likewise, in pure
gluodynamics well separated I-A pairs should be included in the partition
function. It is clear that if the field configuration under consideration is very
close to the exact solution (stationary point in the functional integral) it must
be taken into account.

Thus, the question arises as to whether one can make quantitative the
notion of proximity of the given field configuration to the exact solution and
— if yes — what small parameter measures this proximity. A related crucial
question is as follows: “If the selection criteria are relaxed and the functional
integral is not represented exclusively by the stationary points of the classical
action how far can one distance oneself from the exact solutions?”
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It is very hard to answer these questions in a fully quantitative manner. The
understanding existing in the current literature is heuristic, at best, and since
we agreed to avoid controversial issues in this lecture, we will limit ourselves
to a discussion of the approximate solutions when they are arbitrarily close
to the exact ones; the question of their fate with worsening of the proximity
parameter is left aside.

The approach allowing one to deal with the approximate solutions is usually
referred to in the literature as constrained instantons [28]. Assume we have a
field configuration ¢(#) continuously depending on some parameter(s) 3; ¢ is
a generic notation for the set of all relevant fields. Assume that at B — Gy the
field ¢ tends to become an exact solution. Let us call £ = f the limiting point.
In the vicinity of the limiting point ¢(3) is almost an exact solution. The fact
that it is still not the exact solution means that there exist such deformations
of ¢ that decrease the action. Typically such “decreasing” deformations are
inherent to one — at most, several — directions in the functional space, call
them destabilizing directions. Deformations along all other directions increase
the action (“energy”). The basic idea of the constrained instantons is as fol-
lows. One introduces a constraint in the functional integration measure in
such a way as to lock up all destabilizing directions. Then one minimizes the
action subject to this constraint. Only those variations of ¢ are allowed which
go in the directions perpendicular to the destabilizing ones. In this way one
arrives at the constrained instanton. Dynamics in the destabilizing directions
is studied separately.

To make a simple physical picture lying behind the program graphic, let
us turn to the example of the instanton in the Higgs phase. At p — 0 the
BPST instanton becomes the exact solution. This is the limiting point which
one can approach arbitrarily closely. If g # 0 there exists one direction in
the functional space along which the action (“energy”) slowly decreases. This
direction corresponds to rescaling the instanton solution as a whole to smalier
radii. By imposing a constraint we forbid the movement in the functional
space along this direction. In the orthogonal subspace any deformation of
the field configuration only increases the action, so it is possible to find one
which minimizes the action, the constrained instanton. We then calculate the
contribution of the constrained instanton in physically observable quantities.
At the last stage we eliminate the constraint by integrating the result over all
possible values of p.
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It is worth noting that there is no unambiguous prescription as to how to
choose the constraint. Usually, in each particular problem the most convenient
and adequate choice is pretty clear from the physical context. For instance in
the example above the appropriate constraint must fix the size of the instanton.
The classical equations of motion are changed, of course, once the constraint
is introduced. New equations do have a solution which at small = behaves
like that of Belavin ef al while at large distances it decays exponentially,
O(exp(—mwx}) for the gauge field and O(exp(—myx)) for the Higgs field. The
corresponding action becomes now p dependent and can be readily calculated
in the form of expansion in p*v?, see Sec. 8.6. It is important that the ’t Hooft
term is O(g?) compared to the BPST term, so that the p dependence is indeed
weak provided that p < m"Wl.

(As a matter of fact, in Sec. 8.6 we managed to obtain the 't Hooft term
without explicitly invoking the constrained instanton technique, a fact explain-
able by specific features of the instanton expression for the scalar field. The
heavy artillery of the constrained instantons become relevant at the next-to-
leading order.)

A version of the constrained instanton technique most often exploited in
practice in connection with the approximate solutions, is the valley or stream-
line method [44] (for reviews referring to the Yang-Mills theory see e.g.
Ref. [45]). The valley method is a variant of the constrained instanton ap-
proach, with a specific prescription as to how one should choose the con-
straints. It is most suitable to the problem of [-A pairs. Let us sketch a
physical picture lying behind the valley method in the simplest example, one
I-A pair.

We start from a pair of pseudoparticles at very large separations, large
compared to their sizes which for simplicity are assumed to coincide for both
pseudoparticles. This configuration — our boundary condition — is not an
exact solution but is arbitrarily close to that. The field equations will experi-
ence a force tending to change the field in the direction of lowering of the total
energy of two pseudoparticles. Let us do a gedenkenexperiment — introduce an
auxiliary fifth coordinate, “fifth time”, and trace the evolution of the original
configuration in the fifth time. In other words, our [ and A atoms are set free
to move as they wish at {5 = 0.

To visualize the picture further it is instructive to discretize the fifth time.
Then at step zero we have ¢y = qu/ 2y Qﬁ;R/ % where the superscripts indicate
the position of the I (A) centers,
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At step one the field is deformed. The variation of ¢ is obtained in the
following way. Let us try to change ¢ along different directions in the func-
tional space. Almost every such attempt will lead to a higher energy, with an
exception of, say, one direction!® where the energy of the field configuration
$1 = ¢o + 8¢y is smaller than that of ¢g. At step two we take ¢1 as an input
and repeat the procedure. In this way we get a chain of field configurations
¢i which becomes, in the limit of the continuous fifth time, a one-parametric
family ¢(83), the bottom of the valley.

In the quantitative terms the bottom of the valley is defined by the following
requirement: as we move along the bottom $(B) at each point the variation of
the coordinate of the bottom must be proportional to the force at the given
point,

9¢(8) 48
o % oty (10)

The proportionality coefficient is, generally speaking, a function of 8 sensitive
to particular parametrizations of the bottom of the valley. {The coordinates
along the bottom can be introduced in different ways.)

To get a clearer picture of the valley method it may be instructive to
compare the infinitely-dimensional functional space to an analog mechanical
motion of a stream (with a large friction) on two-dimensional surface with a
trough (Fig. 16) in the gravitational field. The bottom of the valley in this case
is a one-dimensional curve in the three-dimensional space, X{). The force at

Fig. 16. Mechanical motion of a stream {---) on the bottom of a two-dimensional surface
a trough. The surface is steep in the direction perpendicular to the stream trajectory.

]

15
It may welt happen that the number of such directions is more than one; for clarity we
confine ourselves to the simplest case.
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the bottom is the gradient of the potential energy V, F, = =0V () lx=x(g)-
The velocity of the stream at the given point at the bottom % is proportional
to the force,

X = g%ﬁ x -8V . (106)

This analogy explains the origin of the name “streamline method”.

If the beginning of the valley is a well-defined construction — and one
can hardly doubt that — say, a well-separated I-A pair contributes to the
observable effects, the question of where and how the valley ends up is rather
obscure. Indeed, when the I and A “atoms” approach each other so that
the defect of the action becomes comparable to 87%/¢? they tend to annihilate
each other. Continuing the journey along the bottom of the valley we smoothly
interpolate to a point where the field is weak, the action is @(1). This point, of
course, belongs to ordinary perturbation theory. To avoid double-counting this
part of the valley (a flat part) should be definitely excluded from consideration
based on instantons. The quasiclassical approximation certainly fails here. So
preferably we must stop earlier. Where exactly? Nobody knows. The collapse
of the instanton-based approximations might manifest itself as an occwiring
phase transition when we approach a critical point from the “other” side of
the vailey (the one corresponding to large separations).

12, Fermions in Instanton Field
12.1. Very Heavy Quarks

In this section, we shall briefly discuss how the instanton contribution to the
vacuum-vacuum transition amplitude changes when fermions are included in
the theory.

It is immediately clear that for a fluctuation with a given scale p the in-
fluence of “heavy” quarks with mass m >» p~1 is small; for in this case the
quarks appear at times and distances ~ 1/m < p, at which perturbation the-
ory can be used to calculate the quark loops of the form shown in Fig. 17. The
first few terms of the effective Lagrangian that takes into account the fermion

s\ S e
O e O e

f /I \\

4

Fig. 17. A set of diagrams that one has to calculate to obtain the effective Lagrangian (107).
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loops [46] are given below:
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Gu =G, T TeTeTb - %aﬂ".

The first term in this expression contains the cut-off parameter M and, obvi-
ously, describes the contribution of the quark under consideration to the change
in the coupling constant g. Therefore, it is automatically taken into account
when the result is expressed in terms of the coupling constant at distances
greater than 1/m.

The second and higher terms in (107) give a series in powers of 1 Jm2p?
on the transition to the Euclidean space and the substitution of the instanton
field for G,,,,. Explicit expressions for all gluon operators in Eq. (107) in terms
of the instanton size p can be found in Ref, [46].

12.2. Light (Massless) Quarks

We now turn to the limiting case of “light” quarks, mp < 1, whose impact
on instantons is more radical. We note that for sufficiently small instantons
all quarks are light. We calculate the integral over the Fermi fields in the
path integral that determines the vacuum-vacuum transition: (0]0r}. In the
Euclidean action, a fermion with mass m adds a term of the form [see (45)]

S — f d*zp(—ivu D, — im)y, (108)
and integration of this with respect to the anticommuting fields leads to
Det(—iv,D, —im). (109)

The determinant can be understood as a product of the eigenvalues of the
corresponding operator,

Det{~iv, Dy —im) = [ [(An — im), (110)

n
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where the real numbers ), are the eigenvalues of the Hermitian operator

—iy, Dy
— iy, Dyun{z) = Ajua(z). {111)

Of fundamental importance in the study of the imit m = 0 is the question
of whether certain A, vanish, i.e. the question of zero modes of the fermion
field. We shall show that the interaction with the instanton field leads to the
appearance of one such mode ug,

—iy,Dyug =0, (112)

We pass to two-component spinors XL.R (we use the standard representation
for the v matrices):

1 1 -
Uo = ( ) XL + (1) XR, GIDF‘XL = 0’ 0#- D#XR = Oa (113)
-1

where ajf = (o,Fi). To the equations for x;,,;gn we apply the operators
o, Dy, 0 Dy, respectively. Using the relations (57'), the commutator [D,D,]

= —(ig/2)7°GY,, and the explicit form of G, [see (63)], we obtain

2

P
—DﬁXL = 0, _szR = —4doT Q]ZXR . (114)

[(z —20)® +p

The operator —D? is a sum of the squares of Hermitian operators: _.DQ. =
(~iD,)?, ie. it is positive definite. Therefore, it does not have vanishing
eigenvalues (the boiindary conditions are imposed at a large but finite distance
R) and, therefore, x1, = 0.

In the equation for yr, we use a basis in the space of spinor and color
indices that diagonalizes the matrix ov. We recall that ¢ acts on the spinor
indices, and T on the color indices. This basis corresponds to the addition of
the ordinary spin and the color spin to a total angular momentum equal to
zero (when o = —3) or unity (o7 = +1). It again follows from the positi\.re
definiteness of ﬁDf; that the only suitable case for us is when the total spin
is equal to zero, which completely determines the dependence of yg on the

indices:
Xn o~ g™ (115)

¥

(0- + T)XR = 0:

where & = 1,2 and m = 1,2 are the spin and color indices, respectively.
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The dependence on the coordinates can be readily found from the explicit
form of Df“ and the final result for the zero mode wug (z — x0) (normalized by
the condition fu%udz = 1) has the form

1 [ 1 am 1 am
Ry 2 O LA Ay (S e

We also write down the expression for the zero mode in the singular gauge,
ug 8(z — zo) (which we shall need),

sin 1 I X 1
u E 7) = [T T
0 ( ) T (562 p2)3/2 [ ( 1) ¥, (117)

which is obtained by the multiplication of (116) by the gauge transformation
matrix (64').

12.3. Tunneling Interpretation in the Presence of
Massless Fermions, The Index Theorem

Since the instanton contribution is proportional to det{-—iy,D, — im}, and
the operator iy,D, has a zero mode in the instanton field, it is tempting to
conclude that in the massless limit the instanton contribution vanishes. How
can one reconcile this result with the tunneling interpretation?

Introduction of fermions certainly does not affect the nontrivial topology
in the space of the gauge flelds. The existence of a noncontractable loop re-
mains intact, and with this loop comes the necessity of considering the wave
function of the Bloch type (Sec. 5). The instanton trajectory connects T,
and ¥, y; under the barrier, and is related to the probability of tunneling.
If this probability were to vanish, what could have gone wrong with this
picture?

To answer this question we must expand the picture of “tunneling in the
K direction” by coupling the variable K to (an infinite number of ) the fermion
degrees of freedom. In order to make the situation more transparent we will
slightly distort some details. We will assume that the motion of the system
in the K direction is slow, while the fermion degrees of freedom are fast, so
that the approximation of the Born-Oppenheimer type is applicable. In this
approximation the motion in the K direction is treated adiabatically. We
first freeze K, then consider the dynamics of the fermion degrees of freedom,
integrate them out, and at the last stage return to the evolution of the variable
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K. Certainly, in QCD all degrees of freedom are equally fast and no Born-
Oppenheimer approximation can be developed. The general feature of the
underlying dynamics that we are interested in does not depend, however, on
this approximation.

Thus for each given value of X we must determine the fermion component
of the wave function. This is done by building the Dirac sea in the fermion
sector, with K frozen. The structure of the Dirac sea depends on the value
of K.

When K varies adiabatically, the energy of the fermion levels continuously
evolves. The points X = n and K = n + 1, being the gauge copies of each
other, are physically identical. This means that the set of the energy levels of
the Dirac sea at K = n is identical to the set at X =n + 1.

This does not mean, however, that the individual levels do not move. When
K = changes by one unit, some fermion levels with positive energy can dive into
the negative-energy sea, while those from the sea, with the negative energies,
can appear at levels with positive energies. As a whole the set will be intact,
but, some levels interchange their positions (Fig. 18).

For each value of X we buiid the Dirac sea by filling in all negative-energy
states. Let us say at K = n we built it properly. If in the process of motion

AEx
cut off
1/8-‘\"& ~- .
] " z ” g
i - > - ~ /'ELJ m
- ” »’,
S oo - _
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Fig, 18. The fermion energy levels versus X.
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in the K direction, at X = n -+ 1/2, say, one level dives into the sea and one
jumps out, this must be interpreted as the fermion production, since the state
we end up with at K = n + 1 is an excited state with respect to the proper
Dirac sea at X = n + 1. Thus, the tunneling trajectory connects the states
Vo ®n (ferm) with W, 148, (ferm) where the fermion components &, (ferm)
and $,yq(ferm) differ by the quantum numbers of the fermion sector. We
tried to calculate the probability of the tunneling transition with no change
of the fermion state, and got zero. We now understand that we should not
be discouraged. This zero could have been expected. The tunnelings occur
in such a way that the fermion quantum numbers are forced to change in the
process of the tunneling.

The consideration presented above is exact in the two-dimensional Schwin-
ger model (spinor electrodynamics), see the review paper [47] for a pedagogical
discussion. As was noted, in QCD a qualitatively similar picture is believed to
take place. The argument demonstrating the validity of this picture in QCD
is based on the so-called triangle anomaly. Assume for simplicity that we have
one massless quark, ¢. At the classical level both the vector and axial currents

Vi=ama A= avrsg
are conserved,
8.V, =0, duA,=0.

At the quantum level the axial current is anomalous,

2
g ~
dud, = WGﬁquw-
Let us now integrate over 2 and evaluate both sides of this equation in the in-
stanton field. On the left-hand side we first integrate over the spatial variables
%. Then, the left-hand side reduces to

/_Do dt@oondSw = Qs(t = OO) - Qs(t = —-OO) . (118)

The right-hand side is

2

1% fd‘lx(Gﬁyéﬁv)inst. =2Q = 2(K(t = 0) — K(t = —o0)).
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We see that in theory with one massless quark in the instanton transition the
chiral charge is forced to change by two units — say, a left-handed quark is
converted into a right-handed quark with the unit probability. If we want to
get a nonvanishing tunneling probability we have to incorporate this feature.
This will be done in the next section.

The variation of the chiral charge, AQs # 0, in the tunneling transition
is in one-to-one correspondence with the occurrence of the zero modes in the
Dirac equation in the self-dual fields. The number of the fermion zero modes
is related to the topological charge of the gauge field by the so-called Atiyah-
Singer (or the index) theorem [48], which has been derived in the instanton
context in Ref. [49] (see also Refs. [8, 50, 51]). Specifically, if the number of
the normalizable zero modes of positive {negative) chirality is ny (n_) then

ny —n- =40 (119)

for each Dirac fermion field ¥ in the fundamental representation (since the
operator 1P is Hermitian, the equation ¥ = 0 implies that the equation on
¥ has a zero-eigenvalue solution as well). A brief but illuminating discussion
of the derivation of Eq. {119) can be found in the review paper of Coleman
(8]. As a matter of fact, this theorem is equivalent to the consideration of the
triangle anomaly in the axial-vector current presented above.

Let us note in passing that the presence of massless fermions, combined
with the triangle anomaly in 8,4, results in another drastic consequence:
the ¢ term becomes uncbservable even if § # 0. Indeed, one can rewrite Ly as

9
Lo = 504y,

i.e. a full derivative of the gauge invariant quantity. Such full derivatives drop
out from the action. This is in sharp distinction with the full derivative of the
Chern-Simons current, which, as we know, gives a nonvanishing contribution
in the action once we switch on the instanton field. The Chern-Simons current
is not gauge-invariant.

This argument implies that in the theory with light quarks all § dependent
effects must be proportional to the quark mass.

12.4. Instanton Densily in the Theory with Light Quarks

To calculate the instanton density we must consider the vacuum-to-vacuum
transition amplitude in the theory with light quarks. In addition to the factors
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we have obtained in pure gluodynamics this amplitude acquires the following
factor due to the fermion field (we introduce one such field for the time being)
_m_ Det'(=iv,D,} Det(—iv,8, — iM)
M Det'(~iv,D, —iM)  Det(—iv,8,)

where Det’ denotes the determinant without the zero mode and we take into ac-
count the regularization and also the normalization by perturbation theory. In
all the nonzero modes, mn is taken as equal to zero, so that after the separation
in F of the factor m/M the remaining part depends only on the dimensionless
parameter Mp. As in pure gluodynamics (see Sec. 9), this dependence must be
such that the cut-off parameter M is rermoved by a renormalization of the cou-
pling constant, i.e. the dependence of F on M p must give the renormalization
of the coupling constant due to the fermions in the factor =87/ 93,

82 F 1
Ap—=-ln——  —InMp—~InM
F e n pypm— InMp 3 InMp. (120)

The first logarithm derives from the zero mode, the second from the nonzero
modes. Comparing the result with formula (81) for gluons, we see that the
situation has been changed because of the anticommutativity of the fermion
fields: the zero modes of the light quarks lead to the screening of the charge,
and the nonzero modes to antiscreening.

In the ordinary perturbation theory, the decomposition in (120} can be as-
sociated with the spin-dependent part of the interaction (the first logarithm)
and the “charge” part, which is not associated with the spin (the second log-
arithm). Indeed, the imaginary part of the gluon polarization operator, which
derives from the intermediate g state, can be represented in the form

2
Fap _ » g dO
ImILe = §° 5 f T2 Al — 9wd” = (p1 — p2)u(p1 — p2).)

ab 9 . 1
=4 m(%% = Qe q )(1 - 5) : (121)

In this formula, p; and p, are the particle and antiparticle momenta, ¢ =
P1 + p2, and the integration is over the directions of P1 = —p3 in the center-
of-mass system. The second term in (121) differs by only the factor —2 from
the contribution of a spinless color doublet, The factor 2 corresponds to the
two polarization states, and the minus to the anticommutativity.
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We note that for the gluon vacuum polarization there is also an analogous
relation between the spin part of the polarization and the zero modes. This
is readily seen in the “background” gauge obtained by adding the term (71)
to the action. In perturbation theory, one can take as the “external” field,
for example, a potential that has only a third color component, and in the
loop only “charged” components will propagate. The three-gluon vertex in
this gauge has the form of a sum of a color part and a magnetic part, which
do not interfere in the polarization operator. The spin (magnetic) part gives
the “antiscreening” logarithm, and the charge (color) part (together with the
Higgs particles) the “screening” part.

As we already know, in the limit m — 0 the vacuum-to-vacuum transition
amplitude tends to zero, and the instanton fluctuation couples the “vacuum”
with the state with the one left-handed quark and the one right-handed anti-
quark. Alternatively, one can say that the instanton fluctuation couples the
state with the left-handed quark with that with the right-handed quark. (Note
that if m = 0 the left-handed quark does not become the right-handed quark
in any order of the perturbation theory.) Let us calculate this coupling. To
this end we consider the transition from a single-quark state to a single-quark
state; we shall assume that the quark momenta p and p’ are small compared
with 1/p. Proceeding as in Sec. 10, we use the reduction formula

(v'lpr} = —fdﬂ:dm’ei”'“"i”xﬂam(ﬁ')aw(OIT{QZ"(:E’)*E(E)}I(J)ins(zf‘)mvfs“1
(122)
where 97 and v§ are the spinors that describe the final and the initial quark
(the superscript is the color index, the subscript the spinor index).
We find the instanton contribution to the fermion Green’s function by using
the relation

uly (@t ()
w2 R . N {n)vy (n)B .
OIT{g2 (=" )q5(x) }0Yins Nawrd §nj . (010r)ns . (123)

In the limit m — 0, the zero mode makes the main contribution, and (123) is
finite at m = 0 (since {0{07)ins contains F o m).

Using the explicit form (117) of the zero mode in the singular gauge, we can
now readily obtain the result. We formulate it in the form of the expression
for the effective Lagrangian that describes all transitions which arise from the
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instanton fluctuation with scale o

AL(z) = H [mqp - 2n%p°qp (1 + %TaﬁauvUW> QLJ
q

% ex 2m? o b dp ,.
PLUT 5 P nels do(p)FdO- (124)

This contains a product over all species of light (m,p <« 1) quarks, and
T = (YuVe — 1Yu)/2. In Minkowski space, the symbols 7,,, differ from
the Euclidean symbols only when 4 or v = 0, and then by a factor i. By dé we
denote the differentia) corresponding to the color orientation of the instanton
and it is normalized to unity, fdé=1. A dependence on the orientation entersi
through the substitution Napw = Oaarflary (O is the matrix of rotations in the
calor space), which must be made in {124). Further details and explicit color
factors for the gauge group SU(3) can be found in Ref. [52]. The quantity
do(p} difters from d(p) in Eq. (85) in pure gluodynamics by the muitiplication
by the factor

epr[—lln2—E+l(In2 2 - sl _ ozor
3 36 '3 ”J”’anzls? e, (%)
5=
where F is the number of light fermions. This is for the Pauli-Villars regular-
izatii)jl_; for the MS scheme, the 0.292 is replaced by —0.495, and by 0.153 for
the MS scheme. In addition, in the expression (82) for 872 /g2(p) it is necessary
to include the fermion contribution,

For the antiinstanton, AL is obtained from (124) by the substitution
Tapr —+ TNage, qLR — gr,L. Note also that all the operators, the constant
g, and the masses mq in AL are normalized at the point p, so that besides
the dependence given explicitly there is a logarithmic dependence on p, which
Is determined by the anomalous dimension of the operator term in AL under
consideration.

‘ Of particular interest are the instanton-generated fermion vertices; this
}nteraction is frequently called the 't Hooft determinant interaction. The point
is that it explicitly demonstrates the breaking of the U(1) symmetry associated
with transformations of the form ¢ = &"*q, Naively, such a symmetry holds
in a theory with massless quarks, The nontrivial nature of the breaking of
this symmetry can be seen from the fact that, for example, in a theory with
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one quark AL describes the transition of a “left-handed” quark into a “right-
handed” one, which is impossible in any finite order of perturbation theory for

m=0.

12.5. Global Anomaly

The effective Lagrangian in Eq. (124) presents a concise formula Isummariz--
ing the effects due to light quarks in QCD. A thorough inspection of this
Lagrangian leads one to a perplexing question. Indeed, let us assume that,
instead of QCD, we consider an SU(2) theory with one massless left-handed
Weyl fermion transforming as a doublet with respect to SU(2}. Usually we.dea.l
with the Dirac fermions; one Dirac fermion is equivalent to two Weyl fermions.
Now we want to consider a chiral theory. Before the advent of the instan-
tons this theory was believed to be perfectly well-defined. It has no internal
anomalies; moreover, in perturbation theory, order by order, one encounters
no reasons to make the theory sick. And yet, this theory is pathological. The
't Hooft interaction helps us reveal the pathology.

Indeed, if we start building an effective Lagrangian analogo-us to Eq.- (124)
in the SU(2) theory with one massless left-handed Weyl fermion we will im-
mediately discover that this Lagrangian must be linear in the fermion ﬁeld.- In
the instanton transition for ene Dirac fermion AQs = 2, but the Weyl fermion
= 1/2 of the Dirac fermion, and hence AQs = 1!

It was obvious to many that something was unusual in this theory. The
intuitive feeling of pathology was formalized by Witten who showed [53] that
this theory is ill-defined because of the global anemaly. Such theory is mathe-
matically inconsistent. It simply does not exist.

One of the possible proofs of the global anomaly is based on the fermion
level restructuring in the instanton transition. The key elements are the follc'»w-
ing: (i) the vacuum-to-vacuum amplitude in the theory with one Wey] fermion

is proportional to /det(:12); (ii) Only one pair of the fermion levels exchange
their positions when X = n goes in K = n -+ 1. For further details sce Ref. [563].

13. Continuation in Euclidean Space in the
Theories with Chiral Fermions and
Supersymmetric Theories

Usually, the first step of every instanton practitioner is to rewrite the theory
under consideration as a Euclidean theory. We have done this too in Sec. 6.
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This is possible and convenient if the theory one deals with contains only
Dirac fermions. For chiral fermions this is not possible. The reason lies in
the fact that one cannot define for the chiral Fermi fields the operation of
involution {complex conjugation) in the Euclidean space. For this reason one
cannot formulate, in particular (unextended) supersymmetric theories (which
always involve chiral termions) in the Euclidean space. In slightly different
terms, one cannot introduce the notion of the Majorana spinor in the Euclidean
space. Therefore, the problem of the continuation is common to both chiral
and supersymmetric theories.

If we want to consider the instanton effects in these theories we have to
indicate how the Euclidean continuation is to be done. Here we would like to
show that Euclidean continuation is not at al] equivalent to constructing the
Euclidean version of the theory. One can keep the theory in the Minkowski
space-time, and instead of continuing the theory, analytically continue just the
solutions of the equations of motion. The fields, the Lagrangian and the action
remain Minkowskean. What is really needed for the instanton calculations is
the saddle point method of computation of path integrals based on analytic
continuation in £ for the tunneling processes.

Our method of Euclidean continuation of functional integrals . follows the
works of Berezin [54). Let us recall the basic procedure for constructing the
functional integrals. If we have a guentum Hamiltonian given as a function of
the coordinate operator §; and momentum operator p;, H (@i, Bs), then we can
unambiguously build a representation for the evolution operator exp(—if t) in
terms of the functional integral

T/2

@Dl = [ T DpDgexp { [

-T/2

% [Zf’i‘iﬁ — H{pi(t), Qi(t))J } , (126)

where the integration runs over all trajectories satisfying the following condi-

tions
1 +) 1 1
i t:j’_-—T = ( i :—T =i t:——T .
o(t=ag) <o n(e=gr)-nfi- i)

Quite an analogous representation is valid for Fermi systems with the only dif-
ference that the integration runs over anticommuting Grassmann parameters.
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Now, continuation to the Euclidean space reduces to a single step, transition
to an imaginary value of the parameter I, T = —i7. In other words, instead of
exp{—iHT) we consider exp(—HT). The functional integral representing this
operator is built in the same way as above,

+7/2

@l m1) = [ 1] DoiDa exp{ o

—r/2
<[ > p+ He@aw)| ). )

Performing integration over Dp;(¢) we arrive at the ordinary expression for the
Euclidean action. This is for the Bose fields. For the Fermi fields one should
calculate the integral over D4, the step usually avoided.

On the other hand, arranging the expression (127) in the Euclidean form
is not necessary at all. Indeed, quantization of the theory in the Minkowski
space determines the operator H(f;,q;) as well as all the conserved charges
(commuting operators). The action of these charges on $; and §; fixes their
transformation law, which, in turn, generates the corresponding symmetry
transformations for integration variables in the expressions like (127), in par-
ticular, SUSY transformations (for more details see Chapter VI).

. Algebraically, all expressions for the transformations differ from the original
ones (defined in the Minkowski space} only by the substitution zy = —ix4.

To elucidate our procedure [55] and notations let us consider the vector
potential for the instanton solution (more exactly, antiinstanton)

oy i1

B8 g .'.82 + ,02
Here spinor indices are introduced running over 1, 2 both in the color and
coordinate spaces. The connection with the ordinary color triplet index is
given by the following relation

al & a,v,p=1,2
A‘“:A“(T—) ( e ) (129)

2 o e=1,2,3

(85 + 633) (128)

where (7%)5 stand for the Pauli matrices, 7% is the antisymmetric Levi-Civita
symbol, which plays the role of metric:
Fa:é‘aﬁFg, Fa :SaﬁFﬁ,

el = g =1,

Eaf = —g%B

(130)
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The relation between the vector and spinor indices in the coordinate space is
as follows

App = (Ou)ppAug™,
()gp = (3p5, Tgp) -

Gur = diag(1, -1, —1, -1),
(131)

(It is instructive to compare the expression for the ¥ matrices in Eq. (131)
with their Euclidean analogs which are defined after Eq. (113).) Furthermore,
in particular, this relation refers also to %, explicitly

23

T =32 =zy — 24,
L= _gp2i ;
Tysg = =% = —x) + iz,
o (132)
22 = &7 = %o+ 3,
Toy = @' = 3y — iz,

All the above notations are obviously taken from the Minkowski space. Their
Euclidean nature is revealed only in the fact that Zg is imaginary, o = —izy.
Another compromise to the Euclidean notation, which is rather unnecessary
though, is in the definition of z2,

2 1 aa
&l = —z, T, 0" = ~§$““a:ad =—z5 + 22 =23 + 22, (133)

One can readily convince oneself that the expression {128) coincides with the
standard form for the BPST instanton. To this end one should take into
account, apart from the expressions given above, the relation between the
Minkowskian and Euclidean fields, A, and A4,

Ao =iy, A" =~y (m=1,2,3), (134)
(the latter are used in the standard approach, see Sec. 6).

The solution of the Dirac equation DV =0 (the 't Hooft zero mode) has
the following form:

& a P
where the lower (undotted) subscript refers to the left-handed SU(2) subgroup

gij zh;a Lorentz O(4) while the upper one is the spinorial index of the color
2).
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