
HW 2: QFT warm-ups

March 28, 2019

will be officially posted on March 21 and due on April 4. Before March 21, any modifi-
cations to the problems are possible.

1 Problem 1: Elastic Rod

We extend our studies from the simple harmonic oscillator to the quantization of an elastic
rod undergoing a small longitudinal vibration, which you will soon see is a 1 + 1 dimensional
field system. The problem can be modeled first by N -coupled harmonic oscillators and then
taking the continuous limit.

We model the elastic rod by N particles with the same mass m, attached by massless
springs with elastic constant k to their two closest neighbours. When in equilibrium, the
distance between two closest particles is a. If the displacement of the i-th particle from its
equilibrium position is measured by the quantity qi, then the Lagrangian of this system is
given by

L = T − V =
N∑
i=1

1

2
m q̇2i −

1

2
k

N∑
i=0

(qi − qi+1)
2 , (1)

where q0 = qN+1 = 0, which means that the two ends of the rod are fixed.

• Show that if we make N large and thus a small, the Lagrangian can be written as

L =

∫
dx

[
1

2
ρ q̇(t, x)2 − 1

2
Y (∂xq(t, x))2

]
≡
∫

dxL (2)

where ρ = lima→0
m
a

is the mass density and Y = lima→0 k a is the Youngs modulus.
Here we introduced the Lagrangian density L. For simplicity, from now on, we set
ρ = 1 and Y = 1.

• Find and write out the Euler-Lagrangian equation for the canonic position q(t, x). And
show that

q(t, x) =

∫ ∞
−∞

dk
1√

2ω(k)

(
eiωte−ikxa†(k) + e−iωteikxa(k)

)
, (3)
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with ω > 0 is a solution to the Euler-Lagrangian equation, if ω(k) = |k|. We note that
one main difference between this solution and the simple harmonic is that in the latter
case, the ω takes one definite given value, but here the ω can take infinite possible
values. Here we somehow assumed that the length of the rod l is long enough (l→∞)
and we can ignore the effect of the boundaries. The particles in the bulk of the rod
are therefore“free”.

• Use the definition p(t, x) = δL(q̇,q)
δq̇(t,x)

to find the canonic momentum p(t, x) and the Hamil-
tonian density H, defined via the Hamiltonian H

H =

∫
dxH(p, q) . (4)

Note that please write p explicitly in terms of a(k) and a†(k) but only need to write
H in terms of p(t, x) and q(t, x).

• Now we are able to quantize the system by imposing the (equal time) quantization
condition [q(t, x1), p(t, x2)] = iδ(x1 − x2), in other words, if x1 and x2 are different
points, then q(x1) and p(x2) commute, otherwise they do not. This assumption is
reasonable, since from the discrete model at the very beginning, different points on
the rod relate to different particles and it is nature that we can measure particle i1’s
position qi1 and simultaneously measure particle i2’s momentum pi2 .

From this, show that (again, here we assume the length of the rod l is large enough so
to take the l→∞ limit.)

[a(k), a†(k′)] = δ(k − k′) , [a(k), a(k′)] = [a†(k), a†(k′)] = 0 . (5)

• Now express the Hamiltonian H in terms of a†(k) and a(k). Suppose we denote the
ground state as |0〉 which satisfies a(k)|0〉 = 0, show that both the ground state energy
E = 〈0|H|0〉 and the energy density E = E/l of the system are divergent (infinite)!!
But in the energy E, we have both the ultraviolet (UV) and infrared (IR) divergences,
while in the density E , we only have the IR divergence. By “UV divergence”, we mean
the divergence due to ω →∞ and by “IR divergence”, we mean the divergence due to
ω → 0 or l→∞.

• Calculate the Feynman propagator ∆F (t1 − t2, x1 − x2) = 〈0|T [q(t1, x1)q(t2, x2)]|0〉.

• Now we disturb the system by adding a potential term

V =

∫
dx

λ

4!
[q(x, t)]4 , (6)

find out the λ correction to the energy density E by calculating the transition amplitude
with t→ −iτ . Note that the O(λ) correction itself is infrared divergent and thus again
infinite!!
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Hint : here everything is almost the same as the harmonic oscillator, for instance the
Wick theorem still applies. The only differences are that the feynman propagator
should be replaced by the one you derived in the previous problem. The vertex now
involves not only

∫ T
0

dτ but also
∫

dx due to the form of the potential V . Also now
the ω is not a fixed value but being integrated over.

• In the correction you obtained above, you should encounter an integral of the form∫ ∞
0

dω

ωα
(7)

the divergence is due to the poor behavior of the integrand when ω → 0. But we note
that if the rod has a finite length l, the ω can never been 0 but takes the values of
nπ
l

with n = 1, 2, 3, 4, . . . , which can be seen by demanding the solution of q(t, x) in
question#2 vanishes at the ends of the rod. The only reason here we have ω → 0 is
soley due to the fact we have taken the l → ∞ limit. Now suppose we recover the
finite l and show that we can replace the integral by∫ ∞

0

dω

ωα
→

∞∑
n=1

lα

nαπα
π

l
. (8)

Perform the summation over n explicitly and use the result to find the finite O(λ)
corrections to the energy density E .

So from this problem you can see the differences between the “rod QFT” and the “simple
harmonic QFT” are: 1. now the canonic variables (e.g. q or p) depend on both t and x
(or label i. here x is a label! just like t. It is not an operator! ) and therefore they are
1 + 1 dimensional objects, while in the simple harmonics they only depend on the time
t and therefore 1 + 0 dimensional. 2. the tiny difference leads to the fact that 1 + 1
dimensional QFT can be thought of an infinite sum of harmonic oscillators (N → ∞). For
instance, H ∼

∫
dω 1

2
ω is a summation over an infinite numbers of harmonic oscillators with

different ω’s, all the way to ω = ∞ (but for finite N , ω of the normal modes can only take
finite numbers of values). 3. and this infinite-harmonic-oscillator-picture (or to say infinite
degrees of freedom) leads to the UV divergence in the QFT byeond 1 + 0-dimension. 4. If
we approximate the size of the system, say the length of the rod here, as infinity, we may
encounter in our theory the IR divergence. Usually the lower the dimension, the stronger
the IR divergence is.

Now we are finished with the canonic quantization of the 1-dimensional rod. Then how
about quantizing a mattress, which is a 2-dimensional surface? and how about we put our
universe in a box, disturb some fields of it and try to quantize them?
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